scholarly journals The T cell receptor repertoire influences V beta element usage in response to myoglobin.

1991 ◽  
Vol 174 (1) ◽  
pp. 83-92 ◽  
Author(s):  
G Ruberti ◽  
A Gaur ◽  
C G Fathman ◽  
A M Livingstone

T cell clones recognizing the sperm whale myoglobin (SpWMb) epitope 110-121 in association with H-2d major histocompatibility complex class II molecules display a very limited heterogeneity of T cell receptor (TCR) V beta usage in DBA/2 mice. All clones previously tested used the same V beta 8.2 gene segment and very restricted junctional regions. To investigate the significance of this observation in vivo, we immunized DBA/2 mice with the intact SpW Mb protein or peptide 110-121. Only the V beta 8+ T cells showed any significant response to the 110-121 epitope. The response to peptide 110-121 was then analyzed in mice which, either as a consequence of antibody depletion or through genetic deletion of TCR V beta genes, lacked V beta 8+ peripheral T cells. DBA/2 mice depleted of V beta 8+ T cells by antibody treatment responded poorly to the 110-121 peptide, and only at high antigen concentrations. In contrast, DBA/2V beta a mice (homozygous for a deletion of multiple V beta gene segments including the V beta 8 family) made a response at least as great as that made by DBA/2 mice, even though the DBA/2V beta a mice had a very restricted TCR V beta repertoire compared with DBA/2 mice. Mechanisms which might determine differences in the 110-121 specific response of DBA/2, DBA/2V beta a and F23.1-treated DBA/2 mice are discussed.

Blood ◽  
1996 ◽  
Vol 87 (12) ◽  
pp. 5355-5369 ◽  
Author(s):  
WR Drobyski ◽  
D Majewski

The purpose of this study was to determine whether the administration of high doses of an anti-T-cell receptor (TCR) monoclonal antibody (H57– 597) to donor animals could induce a state of T-cell nonresponsiveness and prevent the development of graft-versus-host disease (GVHD) in murine recipients of major histocompatibility complex (MHC)-matched (B10.BR[H-2k] --> AKR/J[H-2k]) and mismatched (B10.BR[H-2k] --> DBA/2[H- 2d]) marrow grafts. Transplantation of H57–597-treated B10.BR T cells into irradiated AKR or DBA mice resulted in protection from GVHD, which was otherwise lethal in transplanted recipients receiving untreated T cells. The administration of H57–597-treated T cells did not compromise alloengraftment in either strain combination and was found to accelerate donor T-cell reconstitution in recipients of MHC-matched marrow grafts. Optimal protection for GVHD was dependent on the duration of antibody exposure in donor mice. T cells from donor exposed to antibody for only 1 day caused lethal GVHD, whereas exposure for at least 4 days was necessary to abrogate graft-versus-host reactivity. The ability of antibody treatment to protect against the development of GVHD could not be ascribed to the antibody-induced production of Th2 cytokines, the induction of a T- or non-T-suppressor cell population, or the preferential depletion of CD4+ T cells by H57–597. Donor T cells exposed to H57–597 antibody were detectable in recipients for up to 5 weeks after transplantation, indicating that these cells were not eliminated in the host immediately after bone marrow transplantation and contributed to enhanced donor T-cell reconstitution. Moreover, in B10.BR --> DBA chimeras that did not have any clinical evidence of GVHD, potentially MIs-reactive donor-derived Vbeta6+ T cells were present in the spleens of recipients at comparable numbers to normal mice but appeared functionally nonresponsive in vivo. These data strongly suggested that protection from GVHD was due to the fact that antibody treatment resulted in a state of prolonged T-cell anergy that persisted despite the presence of potential costimulatory signals in the recipient. This observation is of potential clinical significance in that it shows that the prevention of GVHD can be accomplished without posttransplantation immunosuppression or the need for in vitro or in vivo T-cell depletion.


1993 ◽  
Vol 178 (4) ◽  
pp. 1231-1246 ◽  
Author(s):  
M Sensi ◽  
S Salvi ◽  
C Castelli ◽  
C Maccalli ◽  
A Mazzocchi ◽  
...  

HLA-A2+ melanomas express common melanoma-associated antigens (Ags) recognized in vitro by autologous cytotoxic T lymphocytes (CTL). However, it is not known whether tumor Ags can drive in vivo a selective accumulation/expansion of Ag-specific, tumor-infiltrating T lymphocytes (TIL). Therefore, to evaluate this possibility, 39 CTL clones isolated from several independent mixed lymphocyte tumor cultures (MLTC) of TIL and peripheral blood lymphocytes (PBL) of an HLA-A2+ melanoma patient and selected for T cell receptor (TCR)-dependent, HLA-restricted tumor lysis, were used for analysis of TCR alpha and beta chain structure by the cDNA polymerase chain reaction (PCR) technique with variable gene-specific primers followed by sequencing. Despite absence of oligoclonality in fresh TIL and PBL, as well as in T cells of day 28 MLTC (day of cloning), sequence analysis of TCR alpha and beta chains of TIL clones revealed a dominance of a major category of melanoma-specific, HLA-A2-restricted T cells expressing a V alpha 8.2/J alpha AP511/C alpha and V beta 2.1/D beta 1/J beta 1.1/C beta 1 TCR. The same TCR was also found in 2 out of 14 PBL clones. The other PBL clones employed a V alpha 2.1 gene segment associated with either V beta 13.2, 14, or w22. Clones A81 (V alpha 2.1/J alpha IGRJ alpha 04/C alpha and V beta 14/D beta 1/J beta 1.2/C beta 1) and A21 (V alpha 8.2/J alpha AP511/C alpha and V beta 2.1/D beta 1/J beta 1.1/C beta 1), representative of the two most frequent TCR of PBL and TIL, respectively, expressed different lytic patterns, but both were HLA-A2 restricted and lysed only HLA-A2+ melanomas and normal melanocytes, thus indicating recognition of two distinct HLA-A2-associated and tissue-related Ags. Finally, by the inverse PCR technique, the specific TCR beta chain (V beta 2.1/D beta 1/J beta 1.1/C beta 1) expressed by the dominant TIL clone was found to represent 19 and 18.4% of all V beta 2 sequences expressed in the fresh tumor sample and in the purified TIL, respectively, but < 0.19% of V beta 2+ sequences expressed in PBL. These results are consistent with the hypothesis that a clonal expansion/accumulation of a melanocyte-lineage-specific and HLA-A2-restricted T cell clone occurred in vivo at the site of tumor growth.


1993 ◽  
Vol 178 (3) ◽  
pp. 909-916 ◽  
Author(s):  
V Kumar ◽  
E E Sercarz

Experimental allergic encephalomyelitis (EAE) is a prototype for CD4+ T cell-mediated autoimmune diseases. Immunization with myelin basic protein (MBP) in B10.PL mice results in EAE, and a majority of animals recover permanently from the disease. Most MBP-reactive encephalitogenic T cells recognize an immunodominant NH2-terminal peptide, Ac1-9, and predominantly use the T cell receptor (TCR) V beta 8.2 gene segment. Here we report that in mice recovering from MBP-induced EAE, peripheral T cells proliferate in response to a single immunodominant TCR peptide from the V beta 8.2 chain (amino acids 76-101), indicating natural priming during the course of the disease. Cloned T cells, specific for this TCR peptide, specifically downregulate proliferative responses to Ac1-9 in vivo and also protect mice from MBP-induced EAE. These regulatory T cells express CD4 molecules and recognize a dominant peptide from the TCR variable framework region of V beta 8.2, in the context of the major histocompatibility complex class II molecule, I-Au, and predominantly use the TCR V beta 14 gene segment. This is the first demonstration of the physiological induction of TCR peptide-specific CD4+ T cells that result from MBP immunization and that are revealed only during the recovery from disease. The downregulation of disease-causing T cells by TCR peptide-specific T cells offers a mechanism for antigen-specific, network-induced recovery from autoimmune disease.


2001 ◽  
Vol 75 (2) ◽  
pp. 1065-1071 ◽  
Author(s):  
Mineki Saito ◽  
Graham P. Taylor ◽  
Akiko Saito ◽  
Yoshitaka Furukawa ◽  
Koichiro Usuku ◽  
...  

ABSTRACT Using HLA-peptide tetrameric complexes, we isolated human T-cell lymphotrophic virus type 1 Tax peptide-specific CD8+ T cells ex vivo. Antigen-specific amino acid motifs were identified in the T-cell receptor Vβ CDR3 region of clonally expanded CD8+ T cells. This result directly confirms the importance of the CDR3 region in determining the antigen specificity in vivo.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A185-A185
Author(s):  
Michelle Fleury ◽  
Derrick McCarthy ◽  
Holly Horton ◽  
Courtney Anderson ◽  
Amy Watt ◽  
...  

BackgroundAdoptive cell therapies have shown great promise in hematological malignancies but have yielded little progress in the context of solid tumors. We have developed T cell receptor fusion construct (TRuC®) T cells, which are equipped with an engineered T cell receptor that utilizes the full complement of TCR signaling subunits and recognizes tumor-associated antigens independent of HLA. In clinical trials, mesothelin (MSLN)-targeting TRuC-T cells (TC-210 or gavo-cel) have shown unprecedented results in patients suffering from advanced mesothelioma and ovarian cancer. To potentially increase the depth of response, we evaluated strategies that can promote intra-tumoral T cell persistence and function. Among the common ??-chain cytokines, IL-15 uniquely supports the differentiation and maintenance of memory T cell subsets by limiting terminal differentiation and conferring resistance to IL-2 mediated activation-induced cell death (AICD). In the studies described here, we evaluated the potential of IL-15 as an enhancement to TRuC-T cell phenotype, persistence and function against MSLN+ targets.MethodsPrimary human T cells were activated and transduced with a lentiviral vector encoding an anti-MSLN binder fused to CD3ε alone or co-expressed with a membrane-tethered IL-15rα/IL-15 fusion protein (IL-15fu). Transduced T cells were expanded for 9 days and characterized for expression of the TRuC, IL-15rα and memory phenotype before subjecting them to in vitro functional assays to evaluate cytotoxicity, cytokine production, and persistence. In vivo efficacy was evaluated in MHC class I/II deficient NSG mice bearing human mesothelioma xenografts.ResultsIn vitro, co-expression of the IL-15fu led to similar cytotoxicity and cytokine production as TC-210, but notably enhanced T-cell expansion and persistence upon repeated stimulation with MSLN+ cell lines. Furthermore, the IL-15fu-enhanced TRuC-T cells sustained a significantly higher TCF-1+ population and retained a stem-like phenotype following activation. Moreover, the IL-15fu-enhanced TRuCs demonstrated robust in vivo expansion and intra-tumoral accumulation as measured by ex vivo analysis of TRuC+ cells in the tumor and blood, with a preferential expansion of CD8+ T cells. Finally, IL-15fu-enhanced TRuC-T cells could be observed in the blood long after the tumors were cleared.ConclusionsThese pre-clinical studies suggest that the IL-15fu can synergize with TC-210 to increase the potency and durability of response in patients with MSLN+ tumors.Ethics ApprovalAll animal studies were approved by the respective Institutional Animal Care and Use Committees.


1999 ◽  
Vol 189 (10) ◽  
pp. 1531-1544 ◽  
Author(s):  
Calvin B. Williams ◽  
Deborah L. Engle ◽  
Gilbert J. Kersh ◽  
J. Michael White ◽  
Paul M. Allen

We have developed a unique in vivo system to determine the relationship between endogenous altered peptide ligands and the development of major histocompatibility complex class II– restricted T cells. Our studies use the 3.L2 T cell receptor (TCR) transgenic mouse, in which T cells are specific for Hb(64–76)/I-Ek and positively selected on I-Ek plus self-peptides. To this endogenous peptide repertoire, we have individually added one of six well-characterized 3.L2 ligands. This transgenic approach expands rather than constrains the repertoire of self-peptides. We find that a broad range of ligands produce negative selection of thymocytes in vivo. When compared with the in vitro TCR–ligand binding kinetics, we find that these negatively selecting ligands all have a half-life of 2 s or greater. Additionally, one of two ligands examined with no detectable binding to the 3.L2 TCR and no activity on mature 3.L2 T cells (Q72) enhances the positive selection of transgenic thymocytes in vivo. Together, these data establish a kinetic threshold between negative and positive selection based on the longevity of TCR–ligand complexes.


Blood ◽  
2010 ◽  
Vol 116 (25) ◽  
pp. 5560-5570 ◽  
Author(s):  
Karla R. Wiehagen ◽  
Evann Corbo ◽  
Michelle Schmidt ◽  
Haina Shin ◽  
E. John Wherry ◽  
...  

Abstract The requirements for tonic T-cell receptor (TCR) signaling in CD8+ memory T-cell generation and homeostasis are poorly defined. The SRC homology 2 (SH2)-domain–containing leukocyte protein of 76 kDa (SLP-76) is critical for proximal TCR-generated signaling. We used temporally mediated deletion of SLP-76 to interrupt tonic and activating TCR signals after clearance of the lymphocytic choriomeningitis virus (LCMV). SLP-76–dependent signals are required during the contraction phase of the immune response for the normal generation of CD8 memory precursor cells. Conversely, LCMV-specific memory CD8 T cells generated in the presence of SLP-76 and then acutely deprived of TCR-mediated signals persist in vivo in normal numbers for more than 40 weeks. Tonic TCR signals are not required for the transition of the memory pool toward a central memory phenotype, but the absence of SLP-76 during memory homeostasis substantially alters the kinetics. Our data are consistent with a model in which tonic TCR signals are required at multiple stages of differentiation, but are dispensable for memory CD8 T-cell persistence.


2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S176-S177
Author(s):  
A Gamliel ◽  
L Werner ◽  
N Salamon ◽  
M Pinsker ◽  
B Weiss ◽  
...  

Abstract Background Memory T cells play an important role in mediating inflammatory responses in IBD. The integrin a4b7 is highly expressed on activated T cells, and is thought to direct homing of lymphocytes to the intestine, following its binding to MADCAM-1 expressed exclusively on intestinal endothelial cells. Since UC is characterised by oligoclonal expansion of specific T-cell clonotypes, we hypothesised that circulating memory T cells with gut-homing potential would exhibit unique T-cell receptor repertoire features. Methods Peripheral blood mononuclear cells were collected from 5 control subjects and 6 pediatric patients with active UC. Following CD3 MACS sorting cells were FACS sorted into a4b7 positive and a4b7 negative CD3+CD45RO+ memory T cells. DNA was Isolated from each subset and subjected to next-generation sequencing of the TCRB. This high-throughput platform employs massive parallel sequencing to process millions of rearranged T-cell receptor (TCR) products simultaneously, and permits an in-depth analysis of individual TCRs at the nucleotide level. Comparisons of different indices of diversity, CDR3 length and clonal biochemical characteristics were performed between a4b7 positive and a4b7 negative populations for each subject, and between controls and UC patients. Results PBMCs were isolated from active UC patients during endoscopic assessment. Four patients had a Mayo endoscopic score of 2, and two patients had a score of 1. Only one patient was treated with an immunosuppressive medication (azathioprine), and five out of six patients were treated with 5ASAs. Percentages of memory T cells (43.8 ± 12.3% vs. 32.2 ± 13.1%, p = 0.17) and a4b7 positive T cells (33.6 ± 15.7% vs. 36.0 ± 17.6%, p = 0.81) were comparable between controls and UC patients. Interestingly, a4b7 positive memory T cells displayed a polyclonal distribution, in both control subjects and in UC patients, without expansion of specific clones. Different indices of diversity, including shanon’s H, clonality index and entropy, were similar among controls and patients, both for a4b7 positive and a4b7 negative populations. Finally, clonal overlap between a4b7 positive and a4b7 negative memory T cells, for each subject was high, ranging between 30–50% for controls and 27–48% for UC patients. Conclusion a4b7 expressing memory T cells exhibited a polyclonal repertoire in both control subjects and patients with active UC, with high rates of overlap with a4b7 negative memory T cells. Our study, along with additional recent reports, challenge the dogma of the importance of a4b7 expression for T-cell migration to the gut, and may suggest that vedolizumab’s suppresses intestinal inflammation by blocking the trafficking of innate immune subsets.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 631
Author(s):  
Jie Wang ◽  
Katarzyna Urbanska ◽  
Prannda Sharma ◽  
Reza Nejati ◽  
Lauren Shaw ◽  
...  

Peripheral T cell lymphomas (PTCLs) are generally chemotherapy resistant and have a poor prognosis. The lack of targeted immunotherapeutic approaches for T cell malignancies results in part from potential risks associated with targeting broadly expressed T cell markers, namely T cell depletion and clinically significant immune compromise. The knowledge that the T cell receptor (TCR) β chain in human α/β TCRs are grouped into Vβ families that can each be targeted by a monoclonal antibody can therefore be exploited for therapeutic purposes. Here, we develop a flexible approach for targeting TCR Vβ families by engineering T cells to express a chimeric CD64 protein that acts as a high affinity immune receptor (IR). We found that CD64 IR-modified T cells can be redirected with precision to T cell targets expressing selected Vβ families by combining CD64 IR-modified T cells with a monoclonal antibody directed toward a specific TCR Vβ family in vitro and in vivo. These findings provide proof of concept that TCR Vβ-family-specific T cell lysis can be achieved using this novel combination cell–antibody platform and illuminates a path toward high precision targeting of T cell malignancies without substantial immune compromise.


Sign in / Sign up

Export Citation Format

Share Document