scholarly journals Protease inhibitors selectively block T cell receptor-triggered programmed cell death in a murine T cell hybridoma and activated peripheral T cells.

1993 ◽  
Vol 178 (5) ◽  
pp. 1693-1700 ◽  
Author(s):  
A Sarin ◽  
D H Adams ◽  
P A Henkart

The hypothesis that cytoplasmic proteases play a functional role in programmed cell death was tested by examining the effect of protease inhibitors on the T cell receptor-mediated death of the 2B4 murine T cell hybridoma and activated T cells. The cysteine protease inhibitors trans-epoxysuccininyl-L-leucylamido-(4-guanidino) butane (E-64) and leupeptin, the calpain selective inhibitor acetyl-leucyl-leucyl-normethional, and the serine protease inhibitors diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride, all showed dose-dependent blocking of the 2B4 death response triggered by the T cell receptor complex and by anti-Thy-1. These protease inhibitors enhanced rather than inhibited IL-2 secretion triggered by T cell receptor cross-linking, showing that they did not act by preventing signal transduction. Growth inhibition induced by cross-linking the 2B4 T cell receptor, measured by inhibition of thymidine incorporation, was not generally blocked by these protease inhibitors. All five of these protease inhibitors enhanced rather than blocked 2B4 cell death triggered by dexamethasone, an agent previously shown to have a death pathway antagonistic with that of the TCR. 2B4 cytolysis by the cytotoxic agents staphylococcal alpha-toxin and dodecyl imidazole, and that caused by hypotonic conditions, was not significantly affected by the five protease inhibitors tested. The selected protease inhibitors blocked both the apoptotic nuclear morphology changes and DNA fragmentation induced by T cell receptor cross-linking, and enhanced both these properties induced by dexamethasone in 2B4 cells. The T cell receptor-induced death of activated murine lymph node T cells and human peripheral blood CD4+ T cells was blocked by both cysteine and serine protease inhibitors, showing that the protease-dependent death pathway also operates in these systems.

1997 ◽  
Vol 185 (9) ◽  
pp. 1541-1548 ◽  
Author(s):  
Jan Buer ◽  
Iannis Aifantis ◽  
James P. DiSanto ◽  
Hans Joerg Fehling ◽  
Harald von Boehmer

The development of pre–T cells with productive TCR-β rearrangements can be mediated by each the pre–T cell receptor (pre-TCR), the TCR-αβ as well as the TCR-γδ, albeit by distinct mechanisms. Although the TCR-γδ affects CD4−8− precursor cells irrespective of their rearrangement status by TCR-β mechanisms not involving TCR-β selection, both the preTCR and the TCR-αβ select only cells with productive TCR-β genes for expansion and maturation. The TCR-αβ appears to be much less effective than the pre-TCR because of the paucity of TCR-α proteins in TCR-β–positive precursors since an early expressed transgenic TCR-αβ can largely substitute for the pre-TCR. Thus, the TCR-αβ can assume a role not only in the rescue from programmed cell death of CD4+8+ but also of CD4−8− thymocytes. In evolution this double function of the TCR-αβ may have been responsible for the maturation of αβ T cells before the advent of the pre–TCR-α chain.


2002 ◽  
Vol 22 (15) ◽  
pp. 5419-5433 ◽  
Author(s):  
Susanne M. A. Lens ◽  
Takao Kataoka ◽  
Karen A. Fortner ◽  
Antoine Tinel ◽  
Isabel Ferrero ◽  
...  

ABSTRACT The caspase 8 inhibitor c-FLIPL can act in vitro as a molecular switch between cell death and growth signals transmitted by the death receptor Fas (CD95). To elucidate its function in vivo, transgenic mice were generated that overexpress c-FLIPL in the T-cell compartment (c-FLIPL Tg mice). As anticipated, FasL-induced apoptosis was inhibited in T cells from the c-FLIPL Tg mice. In contrast, activation-induced cell death of T cells in c-FLIPL Tg mice was unaffected, suggesting that this deletion process can proceed in the absence of active caspase 8. Accordingly, c-FLIPL Tg mice differed from Fas-deficient mice by showing no accumulation of B220+ CD4− CD8− T cells. However, stimulation of T lymphocytes with suboptimal doses of anti-CD3 or antigen revealed increased proliferative responses in T cells from c-FLIPL Tg mice. Thus, a major role of c-FLIPL in vivo is the modulation of T-cell proliferation by decreasing the T-cell receptor signaling threshold.


Science ◽  
1989 ◽  
Vol 246 (4934) ◽  
pp. 1162-1165 ◽  
Author(s):  
M Mercep ◽  
A. Weissman ◽  
S. Frank ◽  
R. Klausner ◽  
J. Ashwell

2004 ◽  
Vol 279 (50) ◽  
pp. 52762-52771 ◽  
Author(s):  
Xikui K. Liu ◽  
Xin Lin ◽  
Sarah L. Gaffen

The biological activities of the inflammatory cytokine interleukin (IL)-17 have been widely studied. However, comparatively little is known about how IL-17 expression is controlled. Here, we examined the basis for transcriptional regulation of the human IL-17 gene. IL-17 secretion was induced in peripheral blood mononuclear cells following anti-CD3 cross-linking to activate the T cell receptor (TCR), and costimulatory signaling through CD28 strongly enhanced CD3-induced IL-17 production. To definecis-acting elements important for IL-17 gene regulation, we cloned 1.25 kb of genomic sequence upstream of the transcriptional start site. This putative promoter was active in Jurkat T cells following CD3 and CD28 cross-linking, and its activity was inhibited by cyclosporin A and MAPK inhibitors. The promoter was also active in Hut102 T cells, which we have shown to secrete IL-17 constitutively. Overexpression of nuclear factor of activated T cells (NFAT) or Ras enhanced IL-17 promoter activity, and studies in Jurkat lines deficient in specific TCR signaling pathways provided supporting evidence for a role for NFAT. To delineate the IL-17 minimal promoter, we created a series of 5′ truncations and identified a region between -232 and -159 that was sufficient for inducible promoter activity. Interestingly, two NFAT sites were located within this region, which bound to NFATc1 and NFATc2 in nuclear extracts from Hut102 and Jurkat cells. Moreover, mutations of these sites dramatically reduced both specific DNA binding and reporter gene activity, and chromatin immunoprecipitation assays showed occupancy of NFAT at this regionin vivo. Together, these data show that NFAT is the crucial sensor of TCR signaling in the IL-17 promoter.


Sign in / Sign up

Export Citation Format

Share Document