Programmed cell death of T cells signaled by the T cell receptor and the alpha 3 domain of class I MHC

Science ◽  
1991 ◽  
Vol 252 (5011) ◽  
pp. 1424-1427 ◽  
Author(s):  
Sambhara ◽  
R. Miller
1993 ◽  
Vol 177 (6) ◽  
pp. 1541-1550 ◽  
Author(s):  
S C Jameson ◽  
F R Carbone ◽  
M J Bevan

A previous report showed that the proliferative response of helper T cells to class II major histocompatibility complex (MHC)-restricted antigens can be inhibited by analogues of the antigen, which act as T cell receptor (TCR) antagonists. Here we define and analyze peptide variants that antagonize various functions of class I MHC-restricted cytotoxic T lymphocyte (CTL) clones. Of 64 variants at individual TCR contact sites of the Kb-restricted octamer peptide ovalbumin257-264 (OVAp), a very high proportion (40%) antagonized lysis by three OVAp-specific CTL clones. This effect was highly clone specific, since many antagonists for one T cell clone have differential effects on another. We show that this inhibition of CTL function is not a result of T cell-T cell interaction, precluding veto-like phenomena as a mechanism for antagonism. Moreover, we present evidence for direct interaction between the TCR and antagonist-MHC complexes. In further analysis of the T cell response, we found that serine esterase release and cytokine production are susceptible to TCR antagonism similarly to lysis. Ca2+ flux, an early event in signaling, is also inhibited by antagonists but may be more resistant to the antagonist effect than downstream responses.


1991 ◽  
Vol 174 (3) ◽  
pp. 639-648 ◽  
Author(s):  
H DerSimonian ◽  
H Band ◽  
M B Brenner

The T cell receptor repertoire has a potential for vast diversity. However, this diversity is limited by the fact that the majority of thymocytes die as the repertoire is shaped by positive and negative selection events during development. Such thymic selection affecting TCR V beta gene segment usage has been demonstrated in the mouse. However, similar data has not been forthcoming in man, and little is known about the role of the TCR alpha chain in antigen/major histocompatibility complex (MHC) recognition in any species. Here, we used a monoclonal antibody recognizing the TCR V alpha 12.1 gene product to assess the expression of this gene in the peripheral blood of man. In most individuals tested, the percentage of cells expressing V alpha 12.1 was significantly higher in CD8+ T cells than in CD4+ T cells. That the V alpha gene product itself was responsible for this increased expression in CD8+ T cells was underscored by the lack of substantial skewing of V beta usage in the V alpha 12.1-bearing T cells. Moreover, the skewed expression of V alpha 12.1 was already present at birth, indicating that it was likely to be due to a developmental process rather than the result of exposure to environmental antigens. Based on the established role for CD8 in binding to class I MHC molecules, we suggest that increased expression of V alpha 12.1 on CD8+ T cells points to a role for TCR's using V alpha 12.1 in class I MHC/Ag recognition. These results indicate that V alpha gene usage in the peripheral blood of man is not random, and they support a role for V alpha as a participant in the self-MHC recognition process that shapes the TCR repertoire.


1999 ◽  
Vol 96 (20) ◽  
pp. 11470-11475 ◽  
Author(s):  
J. Zerrahn ◽  
A. Volkmann ◽  
M. C. Coles ◽  
W. Held ◽  
F. A. Lemonnier ◽  
...  

1993 ◽  
Vol 178 (5) ◽  
pp. 1693-1700 ◽  
Author(s):  
A Sarin ◽  
D H Adams ◽  
P A Henkart

The hypothesis that cytoplasmic proteases play a functional role in programmed cell death was tested by examining the effect of protease inhibitors on the T cell receptor-mediated death of the 2B4 murine T cell hybridoma and activated T cells. The cysteine protease inhibitors trans-epoxysuccininyl-L-leucylamido-(4-guanidino) butane (E-64) and leupeptin, the calpain selective inhibitor acetyl-leucyl-leucyl-normethional, and the serine protease inhibitors diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride, all showed dose-dependent blocking of the 2B4 death response triggered by the T cell receptor complex and by anti-Thy-1. These protease inhibitors enhanced rather than inhibited IL-2 secretion triggered by T cell receptor cross-linking, showing that they did not act by preventing signal transduction. Growth inhibition induced by cross-linking the 2B4 T cell receptor, measured by inhibition of thymidine incorporation, was not generally blocked by these protease inhibitors. All five of these protease inhibitors enhanced rather than blocked 2B4 cell death triggered by dexamethasone, an agent previously shown to have a death pathway antagonistic with that of the TCR. 2B4 cytolysis by the cytotoxic agents staphylococcal alpha-toxin and dodecyl imidazole, and that caused by hypotonic conditions, was not significantly affected by the five protease inhibitors tested. The selected protease inhibitors blocked both the apoptotic nuclear morphology changes and DNA fragmentation induced by T cell receptor cross-linking, and enhanced both these properties induced by dexamethasone in 2B4 cells. The T cell receptor-induced death of activated murine lymph node T cells and human peripheral blood CD4+ T cells was blocked by both cysteine and serine protease inhibitors, showing that the protease-dependent death pathway also operates in these systems.


1989 ◽  
Vol 169 (5) ◽  
pp. 1619-1630 ◽  
Author(s):  
S Marusić-Galesić ◽  
D L Longo ◽  
A M Kruisbeek

T cells recognize foreign antigens together with those MHC glycoproteins they have encountered during their development in the thymus. How the repertoire of antigen-specific TCRs is selected has not yet been fully defined. We have investigated the T cell repertoire specificities of CD4-CD8+ cytotoxic T cells developing under conditions where one of the class I MHC-encoded molecules is blocked, while other class I-MHC glycoproteins are still expressed. We show that antigen-specific T cells restricted to the blocked class I fail to develop, while generation of other class I-specific T cell proceeds undisturbed. This highly selective perturbation of the T cell receptor repertoire demonstrates that development of CD4-CD8+ T cells with a certain TCR specificity requires expression of particular alleles of class I MHC. Thus, TCR-MHC interactions provide signals essential to the differentiation of precursor T cells.


1997 ◽  
Vol 185 (9) ◽  
pp. 1541-1548 ◽  
Author(s):  
Jan Buer ◽  
Iannis Aifantis ◽  
James P. DiSanto ◽  
Hans Joerg Fehling ◽  
Harald von Boehmer

The development of pre–T cells with productive TCR-β rearrangements can be mediated by each the pre–T cell receptor (pre-TCR), the TCR-αβ as well as the TCR-γδ, albeit by distinct mechanisms. Although the TCR-γδ affects CD4−8− precursor cells irrespective of their rearrangement status by TCR-β mechanisms not involving TCR-β selection, both the preTCR and the TCR-αβ select only cells with productive TCR-β genes for expansion and maturation. The TCR-αβ appears to be much less effective than the pre-TCR because of the paucity of TCR-α proteins in TCR-β–positive precursors since an early expressed transgenic TCR-αβ can largely substitute for the pre-TCR. Thus, the TCR-αβ can assume a role not only in the rescue from programmed cell death of CD4+8+ but also of CD4−8− thymocytes. In evolution this double function of the TCR-αβ may have been responsible for the maturation of αβ T cells before the advent of the pre–TCR-α chain.


Sign in / Sign up

Export Citation Format

Share Document