scholarly journals Dual interaction of the malaria circumsporozoite protein with the low density lipoprotein receptor-related protein (LRP) and heparan sulfate proteoglycans.

1996 ◽  
Vol 184 (5) ◽  
pp. 1699-1711 ◽  
Author(s):  
M Shakibaei ◽  
U Frevert

Speed and selectivity of hepatocyte invasion by malaria sporozoites have suggested a receptor-mediated mechanism and the specific interaction of the circumsporozoite (CS) protein with liver-specific heparan sulfate proteoglycans (HSPGs) has been implicated in the targeting to the liver. Here we show that the CS protein interacts not only with cell surface heparan sulfate, but also with the low density lipoprotein receptor-related protein (LRP). Binding of 125I-CS protein to purified LRP occurs with a Kd of 4.9 nM and can be inhibited by the receptor-associated protein (RAP). Blockage of LRP by RAP or anti-LRP antibodies on heparan sulfate-deficient CHO cells results in more than 90% inhibition of binding and endocytosis of recombinant CS protein. Conversely, blockage or enzymatic removal of the cell surface heparan sulfate from LRP-deficient embryonic mouse fibroblasts yields the same degree of inhibition. Heparinase-pretreatment of LRP-deficient fibroblasts or blockage of LRP on heparan sulfate-deficient CHO cells by RAP, lactoferrin, or anti-LRP antibodies reduces Plasmodium berghei invasion by 60-70%. Parasite development in heparinase-pretreated HepG2 cells is inhibited by 65% when RAP is present during sporozoite invasion. These findings suggest that malaria sporozoites utilize the interaction of the CS protein with HSPGs and LRP as the major mechanism for host cell invasion.

2001 ◽  
Vol 276 (15) ◽  
pp. 11970-11979 ◽  
Author(s):  
Andrei G. Sarafanov ◽  
Natalya M. Ananyeva ◽  
Midori Shima ◽  
Evgueni L. Saenko

We have demonstrated previously that catabolism of a coagulation factor VIII (fVIII) from its complex with von Willebrand factor (vWf) is mediated by low density lipoprotein receptor-related protein (LRP) (Saenko, E. L., Yakhyaev, A. V., Mikhailenko, I., Strickland, D. K., and Sarafanov, A. G. (1999)J. Biol. Chem.274, 37685–37692). In the present study, we found that this process is facilitated by cell surface heparan sulfate proteoglycans (HSPGs). This was demonstrated by simultaneous blocking of LRP and HSPGs in model cells, which completely prevented fVIII internalization and degradation from its complex with vWf. In contrast, the selective blocking of either receptor had a lesser effect.In vivostudies of clearance of125I-fVIII-vWf complex in mice also demonstrated that the simultaneous blocking of HSPGs and LRP led to a more significant prolongation of fVIII half-life (5.5-fold) than blocking of LRP alone (3.5-fold). The cell culture andin vivoexperiments revealed that HSPGs are also involved in another, LRP-independent pathway of fVIII catabolism. In both pathways, HSPGs act as receptors providing the initial binding of fVIII-vWf complex to cells. We demonstrated that this binding occurs via the A2 domain of fVIII, since A2, but not other portions of fVIII or isolated vWf, strongly inhibited cell surface binding of fVIII-vWf complex, and the affinities of A2 and fVIII-vWf complex for the cells were similar. The A2 site involved in binding to heparin was localized to the region 558–565, based on the ability of the corresponding synthetic peptide to inhibit A2 binding to heparin, used as a model for HSPGs.


2003 ◽  
Vol 161 (6) ◽  
pp. 1179-1189 ◽  
Author(s):  
Anthony Wayne Orr ◽  
Claudio E. Pedraza ◽  
Manuel Antonio Pallero ◽  
Carrie A. Elzie ◽  
Silvia Goicoechea ◽  
...  

Thrombospondin (TSP) signals focal adhesion disassembly (the intermediate adhesive state) through interactions with cell surface calreticulin (CRT). TSP or a peptide (hep I) of the active site induces focal adhesion disassembly through binding to CRT, which activates phosphoinositide 3-kinase (PI3K) and extracellular signal–related kinase (ERK) through Gαi2 proteins. Because CRT is not a transmembrane protein, it is likely that CRT signals as part of a coreceptor complex. We now show that low density lipoprotein receptor–related protein (LRP) mediates focal adhesion disassembly initiated by TSP binding to CRT. LRP antagonists (antibodies, receptor-associated protein) block hep I/TSP-induced focal adhesion disassembly. LRP is necessary for TSP/hep I signaling because TSP/hep I is unable to stimulate focal adhesion disassembly or ERK or PI3K signaling in fibroblasts deficient in LRP. LRP is important in TSP–CRT signaling, as shown by the ability of hep I to stimulate association of Gαi2 with LRP. The isolated proteins LRP and CRT interact, and LRP and CRT are associated with hep I in molecular complexes extracted from cells. These data establish a mechanism of cell surface CRT signaling through its coreceptor, LRP, and suggest a novel function for LRP in regulating cell adhesion.


Sign in / Sign up

Export Citation Format

Share Document