scholarly journals Low‐Density Lipoprotein Receptor‐Related Protein 6 Cell Surface Availability Regulates Fuel Metabolism in Astrocytes

2021 ◽  
pp. 2004993
Author(s):  
Hei‐Man Chow ◽  
Jacquelyne Ka‐Li Sun ◽  
Ronald P. Hart ◽  
Kenneth King‐Yip Cheng ◽  
Clara H. L. Hung ◽  
...  
2003 ◽  
Vol 161 (6) ◽  
pp. 1179-1189 ◽  
Author(s):  
Anthony Wayne Orr ◽  
Claudio E. Pedraza ◽  
Manuel Antonio Pallero ◽  
Carrie A. Elzie ◽  
Silvia Goicoechea ◽  
...  

Thrombospondin (TSP) signals focal adhesion disassembly (the intermediate adhesive state) through interactions with cell surface calreticulin (CRT). TSP or a peptide (hep I) of the active site induces focal adhesion disassembly through binding to CRT, which activates phosphoinositide 3-kinase (PI3K) and extracellular signal–related kinase (ERK) through Gαi2 proteins. Because CRT is not a transmembrane protein, it is likely that CRT signals as part of a coreceptor complex. We now show that low density lipoprotein receptor–related protein (LRP) mediates focal adhesion disassembly initiated by TSP binding to CRT. LRP antagonists (antibodies, receptor-associated protein) block hep I/TSP-induced focal adhesion disassembly. LRP is necessary for TSP/hep I signaling because TSP/hep I is unable to stimulate focal adhesion disassembly or ERK or PI3K signaling in fibroblasts deficient in LRP. LRP is important in TSP–CRT signaling, as shown by the ability of hep I to stimulate association of Gαi2 with LRP. The isolated proteins LRP and CRT interact, and LRP and CRT are associated with hep I in molecular complexes extracted from cells. These data establish a mechanism of cell surface CRT signaling through its coreceptor, LRP, and suggest a novel function for LRP in regulating cell adhesion.


1993 ◽  
Vol 296 (3) ◽  
pp. 867-875 ◽  
Author(s):  
S P Iadonato ◽  
G Bu ◽  
E A Maksymovitch ◽  
A L Schwartz

We have recently described a PAI-1-independent pathway of tissue-type plasminogen activator (t-PA) uptake and degradation on the rat MH1C1 hepatoma cell line. Further studies have implicated the low-density-lipoprotein-receptor-related protein (LRP) as the mediator of plasminogen-activator inhibitor type-1-independent t-PA endocytosis. The LRP is a multi-functional receptor which is shared by a variety of ligands, including alpha 2-macroglobulin, apoprotein E-enriched beta-very-low-density lipoprotein, t-PA and Pseudomonas exotoxin A. In each case, binding of ligand to this receptor can be inhibited by addition of the 39 kDa LRP-receptor-associated protein. This protein, which co-purifies with the LRP receptor, is the focus of our present study. 125I-labelled 39 kDa protein binds specifically and with high affinity to a single kinetic binding species on the rat MH1C1 cell surface. Scatchard analysis reveals an equilibrium dissociation constant (Kd) of 3.3 +/- 0.9 (S.D.) nM, with 380,000 +/- 190,000 (S.D.) binding sites per cell. Cross-linking studies indicate that the specific interaction between MH1C1 cells and the 39 kDa protein is mediated by an association with the LRP receptor. The 39 kDa protein strongly inhibits binding of 125I-t-PA, with an apparent Ki value of 0.5 nM. In addition, both unlabelled t-PA and 125I-labelled 39 kDa protein can be co-bound and cross-linked to the same cell-associated LRP receptor. Endocytosis of cell-surface-associated 39 kDa protein was shown to be rapid, with internalized ligand subsequently degraded and released to the extracellular milieu. The rate of uptake and degradation of 125I-labelled 39 kDa protein at 37 degrees C was determined to be 52 fmol/min per 10(6) cells, and supports a model for active recycling of the LRP receptor.


Sign in / Sign up

Export Citation Format

Share Document