lipoprotein receptor related protein
Recently Published Documents


TOTAL DOCUMENTS

828
(FIVE YEARS 97)

H-INDEX

79
(FIVE YEARS 5)

2021 ◽  
pp. annrheumdis-2021-221380
Author(s):  
Kai-di Wang ◽  
Xiang Ding ◽  
Nan Jiang ◽  
Chao Zeng ◽  
Jing Wu ◽  
...  

ObjectivesDysregulated chondrocyte metabolism is closely associated with the pathogenesis of osteoarthritis (OA). Suppressing chondrocyte catabolism to restore cartilage homeostasis has been extensively explored, whereas far less effort has been invested toward enhancing chondrocyte anabolism. This study aimed to repurpose clinically approved drugs as potential stimulators of chondrocyte anabolism in treating OA.MethodsScreening of a Food and Drug Administration-approved drug library; Assays for examining the chondroprotective effects of digoxin in vitro; Assays for defining the therapeutic effects of digoxin using a surgically-induced OA model; A propensity-score matched cohort study using The Health Improvement Network to examine the relationship between digoxin use and the risk of joint OA-associated replacement among patients with atrial fibrillation; identification and characterisation of the binding of digoxin to low-density lipoprotein receptor-related protein 4 (LRP4); various assays, including use of CRISPR-Cas9 genome editing to delete LRP4 in human chondrocytes, for examining the dependence on LRP4 of digoxin regulation of chondrocytes.ResultsSerial screenings led to the identification of ouabain and digoxin as stimulators of chondrocyte differentiation and anabolism. Ouabain and digoxin protected against OA and relieved OA-associated pain. The cohort study of 56 794 patients revealed that digoxin use was associated with reduced risk of OA-associated joint replacement. LRP4 was isolated as a novel target of digoxin, and deletion of LRP4 abolished digoxin’s regulations of chondrocytes.ConclusionsThese findings not only provide new insights into the understanding of digoxin’s chondroprotective action and underlying mechanisms, but also present new evidence for repurposing digoxin for OA.


Author(s):  
Paul A. Mueller ◽  
Yoko Kojima ◽  
Katherine T. Huynh ◽  
Richard A. Maldonado ◽  
Jianqin Ye ◽  
...  

Objective: Antibody blockade of the do not eat me signal CD47 enhances efferocytosis and reduces lesion size and necrotic core formation in murine atherosclerosis. TNF (Tumor necrosis factor)-α expression directly enhances CD47 expression, and elevated TNF-α is observed in the absence of the proefferocytosis receptor LRP1 (low-density lipoprotein receptor-related protein 1), a regulator of atherogenesis and inflammation. Thus, we tested the hypothesis that CD47 blockade requires the presence of macrophage LRP1 to enhance efferocytosis, temper TNF-α-dependent inflammation, and limit atherosclerosis. Approach and Results: Mice lacking systemic apoE (apoE −/− ), alone or in combination with the loss of macrophage LRP1 (double knockout), were fed a Western-type diet for 12 weeks while receiving anti-CD47 antibody (anti-CD47) or IgG every other day. In apoE −/− mice, treatment with anti-CD47 reduced lesion size by 25.4%, decreased necrotic core area by 34.5%, and decreased the ratio of free:macrophage-associated apoptotic bodies by 47.6% compared with IgG controls ( P <0.05), confirming previous reports. Double knockout mice treated with anti-CD47 showed no differences in lesion size, necrotic core area, or the ratio of free:macrophage-associated apoptotic bodies compared with IgG controls. In vitro efferocytosis was 30% higher when apoE −/− phagocytes were incubated with anti-CD47 compared with IgG controls ( P <0.05); however, anti-CD47 had no effect on efferocytosis in double knockout phagocytes. Analyses of mRNA and protein showed increased CD47 expression in anti-inflammatory IL (interleukin)-4 treated LRP1 −/− macrophages compared with wild type, but no differences were observed in inflammatory lipopolysaccharide-treated macrophages. Conclusions: The proefferocytosis receptor LRP1 in macrophages is necessary for anti-CD47 blockade to enhance efferocytosis, limit atherogenesis, and decrease necrotic core formation in the apoE −/− model of atherosclerosis.


2021 ◽  
Author(s):  
John L. Ubels ◽  
Cheng-Mao Lin ◽  
David A. Antonetti ◽  
Monica Diaz-Coranguez ◽  
Cassandra R. Diegel ◽  
...  

Loss-of-function mutations in the Wnt co-receptor, low-density lipoprotein receptor-related protein 5 (LRP5), result in familial exudative vitreoretinopathy (FEVR), osteoporosis-pseudoglioma syndrome (OPPG), and Norrie disease. CRISPR/Cas9 gene editing was used to produce rat strains deficient in Lrp5. The purpose of this study was to validate this rat model for studies of hypovascular, exudative retinopathies. The retinal vasculature of wildtype and Lrp5 knockout rats was stained with Giffonia simplifolia isolectin B4 and imaged by fluorescence microscopy. Effects on retinal structure were investigated by histology. The integrity of the blood-retina barrier was analyzed by staining for claudin-5 and measurement of permeability to Evans blue dye. Retinas were imaged by fundus photography and SD-OCT, and electroretinograms were recorded. Lrp5 gene deletion led to sparse superficial retinal capillaries and loss of the deep and intermediate plexuses. Autofluorescent exudates were observed, correlated with absence of claudin-5 expression in superficial vessels and increased Evans blue permeability. OCT images show pathology similar to OCT of humans with FEVR, and retinal thickness is reduced by 50% compared to wild-type rats. Histology and OCT reveal that photoreceptor and outer plexiform layers are absent. The retina failed to demonstrate an ERG response. CRISPR/Cas9 gene-editing produced a predictable rat Lrp5 knockout model with extensive defects in the retinal vascular and neural structure and function. This rat model should be useful for studies of exudative retinal vascular diseases involving the Wnt and norrin pathways.


Author(s):  
Wonyoung Jeong ◽  
Eek-hoon Jho

Wnt signaling plays crucial roles in development and tissue homeostasis, and its dysregulation leads to various diseases, notably cancer. Wnt/β-catenin signaling is initiated when the glycoprotein Wnt binds to and forms a ternary complex with the Frizzled and low-density lipoprotein receptor-related protein 5/6 (LRP5/6). Despite being identified as a Wnt co-receptor over 20 years ago, the molecular mechanisms governing how LRP6 senses Wnt and transduces downstream signaling cascades are still being deciphered. Due to its role as one of the main Wnt signaling components, the dysregulation or mutation of LRP6 is implicated in several diseases such as cancer, neurodegeneration, metabolic syndrome and skeletal disease. Herein, we will review how LRP6 is activated by Wnt stimulation and explore the various regulatory mechanisms involved. The participation of LRP6 in other signaling pathways will also be discussed. Finally, the relationship between LRP6 dysregulation and disease will be examined in detail.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hua Mao ◽  
Luge Li ◽  
Qiying Fan ◽  
Aude Angelini ◽  
Pradip K. Saha ◽  
...  

AbstractThe vascular endothelium is present within metabolic organs and actively regulates energy metabolism. Here we show osteocalcin, recognized as a bone-secreted metabolic hormone, is expressed in mouse primary endothelial cells isolated from heart, lung and liver. In human osteocalcin promoter-driven green fluorescent protein transgenic mice, green fluorescent protein signals are enriched in endothelial cells lining aorta, small vessels and capillaries and abundant in aorta, skeletal muscle and eye of adult mice. The depletion of lipoprotein receptor-related protein 1 induces osteocalcin through a Forkhead box O -dependent pathway in endothelial cells. Whereas depletion of osteocalcin abolishes the glucose-lowering effect of low-density lipoprotein receptor-related protein 1 depletion, osteocalcin treatment normalizes hyperglycemia in multiple mouse models. Mechanistically, osteocalcin receptor-G protein-coupled receptor family C group 6 member A and insulin-like-growth-factor-1 receptor are in the same complex with osteocalcin and required for osteocalcin-promoted insulin signaling pathway. Therefore, our results reveal an endocrine/paracrine role of endothelial cells in regulating insulin sensitivity, which may have therapeutic implications in treating diabetes and insulin resistance through manipulating vascular endothelium.


2021 ◽  
Vol 15 ◽  
Author(s):  
Kaige Ma ◽  
Shan Xing ◽  
Yan Luan ◽  
Chenglin Zhang ◽  
Yingfei Liu ◽  
...  

Neural stem cell (NSC) damage has been reported in patients with Alzheimer’s disease. Intracellular Aβ plays a vital role in NSC damage. Heparan sulfate proteoglycans are potent mediators of Aβ enrichment in the brain. We hypothesized the heparan sulfate proteoglycan glypican 4 (Gpc4) regulates Aβ internalization by NSCs. We evaluated Gpc4 expression in NSCs from P0–P2 generations using immunofluorescence. Adenovirus and lentivirus were used to regulate Gpc4 expression in NSCs and APP/PS1 mice, respectively. Co-immunoprecipitation was used to determine the relationship between Gpc4, Aβ, and low-density lipoprotein receptor-related protein 1 (LRP1). Intracellular Aβ concentrations were detected using enzyme-linked immunosorbent assay and immunofluorescence. The role of Gpc4/LRP1 on toxic/physical Aβ-induced effects was evaluated using the JC-1 kit, terminal deoxynucleotidyl transferase dUPT nick end labeling, and western blotting. Gpc4 was stably expressed in NSCs, neurons, and astrocytes. Gpc4 was upregulated by Aβ in NSCs and regulated Aβ internalization. Gpc4 attenuation reduced Aβ uptake; Gpc4 overexpression increased Aβ uptake. Gpc4 regulated Aβ internalization through LRP1 and contributed to Aβ internalization and toxic/physical concentrations of Aβ-induced mitochondrial membrane potential and cell apoptosis, partly via LRP1. Therefore, Gpc4 is a key regulator of Aβ enrichment in NSCs. Inhibiting Gpc4 rescued the Aβ-induced toxic effect and attenuated the nontoxic Aβ enrichment into intracellular toxic concentrations. Gpc4 contributed to Aβ internalization and toxic/physical concentrations of Aβ-induced mitochondrial membrane potential damage and cell apoptosis, partly via LRP1. These findings suggest a potential role of Gpc4 in treating Alzheimer’s disease at an early stage, by targeting NSCs.


Sign in / Sign up

Export Citation Format

Share Document