scholarly journals Highly Restricted T Cell Repertoire Shaped by a Single Major Histocompatibility Complex–Peptide Ligand in the Presence of a Single Rearranged T Cell Receptor β Chain

1998 ◽  
Vol 188 (5) ◽  
pp. 897-907 ◽  
Author(s):  
Yoshinori Fukui ◽  
Osamu Hashimoto ◽  
Ayumi Inayoshi ◽  
Takahiro Gyotoku ◽  
Tetsuro Sano ◽  
...  

The T cell repertoire is shaped by positive and negative selection of thymocytes through the interaction of α/β-T cell receptors (TCR) with self-peptides bound to self-major histocompatibility complex (MHC) molecules. However, the involvement of specific TCR-peptide contacts in positive selection remains unclear. By fixing TCR-β chains with a single rearranged TCR-β irrelevant to the selecting ligand, we show here that T cells selected to mature on a single MHC–peptide complex express highly restricted TCR-α chains in terms of Vα usage and amino acid residue of their CDR3 loops, whereas such restriction was not observed with those selected by the same MHC with diverse sets of self-peptides including this peptide. Thus, we visualized the TCR structure required to survive positive selection directed by this single ligand. Our findings provide definitive evidence that specific recognition of self-peptides by TCR could be involved in positive selection of thymocytes.

H-2 Antigens ◽  
1987 ◽  
pp. 479-484
Author(s):  
Guy Gammon ◽  
Nilabh Shastri ◽  
Stanley Wilbur ◽  
Shahrzad Sadegh-Nasseri ◽  
John Cogswell ◽  
...  

Previous studies indicate that T cells recognize a complex between the major histocompatibility complex (MHC) restriction-element and peptide-antigen fragments. Two aspects of this complex formation are considered in this paper: (1) what is the nature of the specificity of the interactions that allows a few MHC molecules to serve as restriction elements for a large universe of antigens; and (2 ) what is the relative contribution of determinant selection (i.e. antigen-MHC complex formation) and T-cell repertoire in determining the capacity of an individual to respond to an antigen ? By analysing single amino acid substitution analogues of a peptide antigen (Ova 325-335) as well as by analysing the structural similarities between unrelated peptides capable of binding to the same MHC molecule, we have been able to document the very permissive nature of the antigen-MHC interaction. Despite this permissiveness of binding, it is possible to define certain structural features of peptides that are associated with the capacity to bind to a particular MHC specificity. With respect to the question of the relative role of ‘determinant selection' and ‘holes in the T-cell repertoire' in determining immune responsiveness, we present data that suggest both mechanisms operate in concert with one another. Thus only about 30 % of a collection of peptides that in sum represent the sequence of a protein molecule were found to bind to la. Although immunogenicity was restricted to those peptides that were capable of binding to la (i.e. determinant selection was operative), we found that about 40 % of la-binding peptides were not immunogenic (i.e. there were also ‘holes in the T-cell repertoire’).


2007 ◽  
Vol 204 (11) ◽  
pp. 2499-2499
Author(s):  
Hema Bashyam

In the 1970s, Michael Bevan showed that T cells only recognize antigens in cells that have the same type of major histocompatibility complex (MHC) molecule present in the thymus where the T cells mature. His work provided the first clues to how thymic self-MHC molecules select the cells that make up the mature T cell repertoire.


1992 ◽  
Vol 176 (6) ◽  
pp. 1611-1618 ◽  
Author(s):  
B Catipović ◽  
J Dal Porto ◽  
M Mage ◽  
T E Johansen ◽  
J P Schneck

Serologically distinct forms of H-2Kb are stabilized by loading cells expressing "empty" class I major histocompatibility complex (MHC) molecules with different H-2Kb binding peptides. The H-2Kb epitope recognized by monoclonal antibody (mAb) 28.8.6 was stabilized by ovalbumin (OVA) (257-264) and murine cytomegalovirus (MCMV) pp89 (168-176) peptides, but not by vesicular stomatic virus nucleoprotein (VSV NP) (52-59) and influenza NP (Y345-360) peptides. The H-2Kb epitope recognized by mAb 34.4.20 was stabilized by VSV NP (52-59) peptide but not by OVA (257-264), MCMV pp89 (168-176), or influenza NP (Y345-360) peptides. Immunoprecipitation of H-2Kb molecules from normal cells showed that 28.8.6 and 34.4.20 epitopes were only present on a subset of all conformationally reactive H-2Kb molecules. Using alanine-substituted derivatives of the VSV peptide, the 28.8.6 epitope was completely stabilized by substitution of the first residue and partially stabilized by substitution of the third or the fifth residues in the peptides. These results indicate that distinct conformational MHC epitopes are dependent on the specific peptide that occupies the antigenic peptide binding groove on individual MHC molecules. The changes in MHC epitopes observed may also be important in understanding the diversity of T cell receptors used in an immune response and the influence of peptides on development of the T cell repertoire.


Sign in / Sign up

Export Citation Format

Share Document