cell repertoire
Recently Published Documents


TOTAL DOCUMENTS

1773
(FIVE YEARS 361)

H-INDEX

111
(FIVE YEARS 11)

2022 ◽  
Vol 12 ◽  
Author(s):  
Guangyao Tian ◽  
Mingqian Li ◽  
Guoyue Lv

T cells play a key role in determining allograft function by mediating allogeneic immune responses to cause rejection, and recent work pointed their role in mediating tolerance in transplantation. The unique T-cell receptor (TCR) expressed on the surface of each T cell determines the antigen specificity of the cell and can be the specific fingerprint for identifying and monitoring. Next-generation sequencing (NGS) techniques provide powerful tools for deep and high-throughput TCR profiling, and facilitate to depict the entire T cell repertoire profile and trace antigen-specific T cells in circulation and local tissues. Tailing T cell transcriptomes and TCR sequences at the single cell level provides a full landscape of alloreactive T-cell clones development and biofunction in alloresponse. Here, we review the recent advances in TCR sequencing techniques and computational tools, as well as the recent discovery in overall TCR profile and antigen-specific T cells tracking in transplantation. We further discuss the challenges and potential of using TCR sequencing-based assays to profile alloreactive TCR repertoire as the fingerprint for immune monitoring and prediction of rejection and tolerance.


2022 ◽  
Author(s):  
Tobias V Lanz ◽  
R Camille Brewer ◽  
Peggy P Ho ◽  
Kevin M Jude ◽  
Daniel Fernandez ◽  
...  

Abstract Multiple sclerosis (MS) is a heterogenous autoimmune disease in which autoreactive lymphocytes attack the myelin sheath of the central nervous system (CNS). B lymphocytes in the cerebrospinal fluid (CSF) of MS patients contribute to inflammation and secrete oligoclonal immunoglobulins. Epstein-Barr virus (EBV) infection has been linked to MS epidemiologically, but its pathological role remains unclear. Here we demonstrate high-affinity molecular mimicry between the EBV transcription factor EBNA1 and the CNS protein GlialCAM, and provide structural and in-vivo functional evidence for its relevance. A cross-reactive CSF-derived antibody was initially identified by single-cell sequencing of the paired-chain B cell repertoire of MS blood and CSF, followed by protein microarray-based testing of recombinantly expressed CSF-derived antibodies against MS-associated viruses. Sequence analysis, affinity measurements, and the crystal structure of the EBNA1-peptide epitope in complex with the autoreactive Fab fragment allowed for tracking the development of the naïve EBNA1-restricted antibody to a mature EBNA1/GlialCAM cross-reactive antibody. Molecular mimicry is facilitated by a post-translational modification of GlialCAM. EBNA1 immunization exacerbates the mouse model of MS and anti-EBNA1/GlialCAM antibodies are prevalent in MS patients. Our results provide a mechanistic link for the association between MS and EBV, and could guide the development of novel MS therapies.


Author(s):  
Ori Toker ◽  
Arnon Broides ◽  
Atar Lev ◽  
Amos J. Simon ◽  
Orli Megged ◽  
...  

2022 ◽  
Author(s):  
Mineto Ota ◽  
Masahiro Nakano ◽  
Yasuo Nagafuchi ◽  
Satomi Kobayashi ◽  
Hiroaki Hatano ◽  
...  

Despite involvement of B cells in the pathogenesis of immune-mediated diseases, biological mechanisms underlying their function are scarcely understood. To overcome this gap, comprehensive analysis of the B cell repertoire is essential. Here, we cataloged and investigated the repertoire of five B cell subsets from 595 cases under immune-mediated diseases and health. CDR-H3 length among naive B cells was shortened among autoimmune diseases in an interferon signature-dependent manner. VDJ gene usage was skewed especially in plasmablasts and unswitched-memory B cells of systemic lupus erythematosus patients with frequent usage of VDJ genes used mainly in naive B cells and not unswitched-memory B cells of healthy controls. We developed a scoring system for this skewing, and it correlated with peripheral helper T cell transcriptomic signatures and disease activity and decreased after belimumab treatment. Moreover, genetic association analysis identified three molecules possibly involved in somatic hyper-mutation processes in humans. Our multimodal repertoire analysis brings new insights to B cell biology.


2022 ◽  
Author(s):  
Gengxi Cai ◽  
Zhanwen Guan ◽  
Yabin Jin ◽  
Zuhui Su ◽  
Xiangping Chen ◽  
...  

PURPOSE Neoadjuvant chemotherapy (NAC) has been widely used in patients with breast cancer to minish tumor burden and increase resection rate of cancer. T-cell repertoire has been believed to be able to monitor antitumor immune responses. This study aimed to explore the dynamic change of T-cell repertoire and its clinical value in evaluating the tumor response in patients with breast cancer receiving NAC. MATERIALS AND METHODS Ninety-four patients who underwent NAC before surgery were recruited, and peripheral blood samples were collected at multiple time points during NAC. High-throughput T-cell receptor (TCR)-β sequencing was used to characterize the T-cell repertoire of every sample and analyzed the changes in circulating T-cell repertoire during NAC. RESULTS We found that the diversity of TCR repertoires was associated with age and clinical stage of the patients with breast cancer. The distribution of Vβ and Jβ genes in TCR repertoires was skewed in patients with human epidermal growth factor receptor 2–positive (HER2+) breast cancer. Vβ20.1 and Vβ30 expression levels before NAC correlate with tumor response after all cycles of NAC in HER2– and HER2+ patients, respectively. Some CDR3 motifs that correlated with clinical response in either HER2+ or HER2– patients were identified. Besides, TCR repertoire evolved during NAC and the diversity of TCR repertoire decreased more after two cycles of NAC in patients with good tumor response after all cycles of NAC ( P = .0061). CONCLUSION Our results demonstrated that TCR repertoire correlated with the characteristics of the tumor, such as the expression status of HER2. Moreover, some characteristics of TCR repertoires that correlated with clinical response were identified and they might provide useful information to tailor therapeutic regimens at the early cycle of NAC.


2021 ◽  
Vol 8 ◽  
Author(s):  
Po-Liang Cheng ◽  
Hsin-Hua Chen ◽  
Yu-Han Jiang ◽  
Tzu-Hung Hsiao ◽  
Chen-Yu Wang ◽  
...  

Objective: Sepsis is life threatening and leads to complex inflammation in patients with immunocompromised conditions, such as cancer, and receiving immunosuppressants for autoimmune diseases and organ transplant recipients. Increasing evidence has shown that RNA-Sequencing (RNA-Seq) can be used to define subendotype in patients with sepsis; therefore, we aim to use RNA-Seq to identify transcriptomic features among immunocompromised patients with sepsis.Methods: We enrolled patients who were admitted to medical intensive care units (ICUs) for sepsis at a tertiary referral centre in central Taiwan. Whole blood on day-1 and day-8 was obtained for RNA-Seq. We used Gene Set Enrichment Analysis (GSEA) to identify the enriched pathway of day-8/day-1 differentially expressed genes and MiXCR to determine the diversity of T cell repertoire.Results: A total of 18 immunocompromised subjects with sepsis and 18 sequential organ failure assessment (SOFA) score-matched immunocompetent control subjects were enrolled. The ventilator-day, ICU-stay, and hospital-day were similar between the two groups, whereas the hospital mortality was higher in immunocompromised patients than those in immunocompetent patients (50.0 vs. 5.6%, p < 0.01). We found that the top day-8/day-1 upregulated genes in the immunocompetent group were mainly innate immunity and inflammation relevant genes, namely, PRSS33, HDC, ALOX15, FCER1A, and OLR1, whereas a blunted day-8/day-1 dynamic transcriptome was found among immunocompromised patients with septic. Functional pathway analyses of day-8/day-1 differentially expressed genes identified the upregulated functional biogenesis and T cell-associated pathways in immunocompetent patients recovered from sepsis, whereas merely downregulated metabolism-associated pathways were found in immunocompromised patients with septic. Moreover, we used MiXCR to identify a higher diversity of T cell receptor (TCR) in immunocompetent patients both on day-1 and on day-8 than those in immunocompromised patients.Conclusions: Using RNA-Seq, we found compromised T cell function, altered metabolic signalling, and decreased T cell diversity among immunocompromised patients with septic, and more mechanistic studies are warranted to elucidate the underlying mechanism.


2021 ◽  
Author(s):  
María Fernanda Lammoglia Cobo ◽  
Julia Ritter ◽  
Regina Gary ◽  
Volkhard Seitz ◽  
Josef Mautner ◽  
...  

Reconstitution of T cell repertoire after allogeneic stem cell transplantation is a long and often incomplete process. As a result, reactivation of Epstein-Barr virus (EBV) is a frequent complication that may be treated by adoptive transfer of donor-derived EBV-specific T cells. We generated donor-derived EBV-specific T cells by peptide stimulation and adoptively transferred them to a patient with angioimmunoblastic T-cell lymphoma (AITL), who had developed persisting high titers of EBV concomitant to relapse after transplantation. T cell receptor beta (TCRβ) deep sequencing showed that the T cell repertoire of the patient early after transplantation (day 60) was strongly reduced and only very low numbers of EBV-specific T cells were detectable. Manufacturing and in vitro expansion of donor-derived EBV-specific T cells resulted in enrichment of EBV epitope-specific, HLA-restricted T cells. Monitoring after adoptive transfer revealed that the dominant TCR sequences from peptide-stimulated T cells persisted long-term and established an EBV-specific TCR clonotype repertoire in the host, with many of the EBV-specific TCRs present in the donor. This reconstituted repertoire was associated with immunological control of EBV and with lack of further AITL relapse.


2021 ◽  
Author(s):  
Claude Gregoire ◽  
Lionel Spinelli ◽  
Sergio Villazala-Merino ◽  
Laurine Gil ◽  
Myriam Moussa ◽  
...  

Lung-resident memory B cells (MBCs) provide localized protection against reinfection in the respiratory airways. Currently, the biology of these cells remains largely unexplored. Here, we combined influenza and SARS-CoV-2 infection with fluorescent-reporter mice to identify MBCs regardless of antigen specificity. scRNA-seq analysis and confocal imaging revealed that two main transcriptionally distinct subsets of MBCs colonize the lung peribronchial niche after infection. These subsets arise from different progenitors and are both class-switched, somatically mutated and intrinsically biased in their differentiation fate towards plasma cells. Combined analysis of antigen-specificity and B cell receptor repertoire unveiled a highly permissive selection process that segregates these subsets into bona fide virus-specific MBCs and bystander MBCs with no apparent specificity for eliciting viruses. Thus, diverse transcriptional programs in MBCs are not linked to specific effector fates but rather to divergent strategies of the immune system to simultaneously provide rapid protection from reinfection while diversifying the initial B cell repertoire.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anna-Maria Hitz ◽  
Kim-Alina Bläsing ◽  
Bettina Wiegmann ◽  
Ramon Bellmàs-Sanz ◽  
Evgeny Chichelnitskiy ◽  
...  

IntroductionFor end-stage lung diseases, double lung transplantation (DLTx) is the ultimate curative treatment option. However, acute and chronic rejection and chronic dysfunction are major limitations in thoracic transplantation medicine. Thus, a better understanding of the contribution of immune responses early after DLTx is urgently needed. Passenger cells, derived from donor lungs and migrating into the recipient periphery, are comprised primarily by NK and T cells. Here, we aimed at characterizing the expression of killer cell immunoglobulin-like receptors (KIR) on donor and recipient NK and T cells in recipient blood after DLTx. Furthermore, we investigated the functional status and capacity of donor vs. recipient NK cells.MethodsPeripheral blood samples of 51 DLTx recipients were analyzed pre Tx and at T0, T24 and 3wk post Tx for the presence of HLA-mismatched donor NK and T cells, their KIR repertoire as well as activation status using flow cytometry.ResultsWithin the first 3 weeks after DLTx, donor NK and T cells were detected in all patients with a peak at T0. An increase of the KIR2DL/S1-positive subset was found within the donor NK cell repertoire. Moreover, donor NK cells showed significantly higher frequencies of KIR2DL/S1-positive cells (p<0.01) 3wk post DLTx compared to recipient NK cells. This effect was also observed in donor KIR+ T cells 3wk after DLTx with higher proportions of KIR2DL/S1 (p<0.05) and KIR3DL/S1 (p<0.01) positive T cells. Higher activation levels of donor NK and T cells (p<0.001) were detected compared to recipient cells via CD25 expression as well as a higher degranulation capacity upon activation by K562 target cells.ConclusionHigher frequencies of donor NK and T cells expressing KIR compared to recipient NK and T cells argue for their origin in the lung as a part of a highly specialized immunocompetent compartment. Despite KIR expression, higher activation levels of donor NK and T cells in the periphery of recipients suggest their pre-activation during the ex situ phase. Taken together, donor NK and T cells are likely to have a regulatory effect in the balance between tolerance and rejection and, hence, graft survival after DLTx.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yongxia Wu ◽  
Jianing Fu ◽  
Haizhen Wang ◽  
Xue-Zhong Yu

The diversity and composition of T-cell receptor (TCR) repertoire, which is the result of V, (D), and J gene recombination in TCR gene locus, has been found to be implicated in T-cell responses in autoimmunity, cancer, and organ transplantation. The correlation of T-cell repertoire with the pathogenesis of graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation remains largely undefined. Here, by utilizing high-throughput sequencing of the genes encoding TCRβ-chain, we comprehensively analyzed the profile of T-cell repertoire in recipient lymphoid and GVHD target organs after bone marrow transplantation (BMT) in mice. In lymphoid organs, TCR diversity was narrowed, accompanied with reduced numbers of unique clones while increased accumulation of dominant clones in allogeneic T cells compared to syngeneic T cells. In an individual allogeneic recipient, donor-derived TCR clones were highly overlapped among tissue sites, and the degree of overlapping was increasing from day 7 to 14 after allogeneic BMT. The top clones in peripheral blood, gut, liver, and lungs were highly mutually shared in an allogenic recipient, indicating that blood has the potential to predict dominant clones in these GVHD target organs. T cells in GVHD target organs from allogeneic recipients had fewer overlapped clones with pre-transplant donor T cells compared to those from syngeneic recipients. Importantly, the top 10 clones in allogeneic recipients were not detectable in pre-transplant donor T cells, indicating clonal expansion of rare rearrangements. Interestingly, even starting from the same pool of donor repertoires, T cells had very few overlapped clones between each allogeneic recipient who developed completely different dominant clones. We were only able to trace a single clone shared by three replicate allogeneic recipients within the top 500 clones. Although dominant clones were different among allogeneic recipients, V26 genes were consistently used more frequently by TCR clones in allogeneic than syngeneic recipients. This is the first study to extensively examine the feature of T-cell repertoire in multiple lymphoid and parenchyma organs, which establishes the association between T-cell activation and GVHD pathogenesis at the level of TCR clones. Immune repertoire sequencing-based methods may represent a novel personalized strategy to guide diagnosis and therapy in GVHD.


Sign in / Sign up

Export Citation Format

Share Document