scholarly journals Regulation of Interleukin (Il)-18 Receptor α Chain Expression on Cd4+ T Cells during T Helper (Th)1/Th2 Differentiation

2001 ◽  
Vol 194 (2) ◽  
pp. 143-154 ◽  
Author(s):  
Ronald B. Smeltz ◽  
June Chen ◽  
Jane Hu-Li ◽  
Ethan M. Shevach

Interleukin (IL)-18 has been well characterized as a costimulatory factor for the induction of IL-12–mediated interferon (IFN)-γ production by T helper (Th)1 cells, but also can induce IL-4 production and thus facilitate the differentiation of Th2 cells. To determine the mechanisms by which IL-18 might regulate these diametrically distinct immune responses, we have analyzed the role of cytokines in the regulation of IL-18 receptor α chain (IL-18Rα) expression. The majority of peripheral CD4+ T cells constitutively expressed the IL-18Rα. Upon antigen stimulation in the presence of IL-12, marked enhancement of IL-18Rα expression was observed. IL-12–mediated upregulation of IL-18Rα required IFN-γ. Activated CD4+ T cells that expressed low levels of IL-18Rα could produce IFN-γ when stimulated with the combination of IL-12 and IL-18, while CD4+ cells which expressed high levels of IL-18Rα could respond to IL-18 alone. In contrast, T cell stimulation in the presence of IL-4 resulted in a downregulation of IL-18Rα expression. Both IL-4−/− and signal transducer and activator of transcription (Stat)6−/− T cells expressed higher levels of IL-18Rα after TCR stimulation. Furthermore, activated T cells from Stat6−/− mice produced more IFN-γ in response to IL-18 than wild-type controls. Thus, positive/negative regulation of the IL-18Rα by the major inductive cytokines (IL-12 and IL-4) determines the capacity of IL-18 to polarize an immune response.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 709-709
Author(s):  
Lequn Li ◽  
Jin Sub Kim ◽  
Vassiliki A Boussiotis

Abstract Abstract 709 The differentiation and functional specialization of effector T cells allows for effective immune response to diverse insults. However, tight regulation of effector T cell responses is required for effective control of infections and avoidance of autoimmunity. Naïve CD4 T cells can differentiate into IFN-γ-secreting type I (Th1) cells and IL-4-secreting type II (Th2) cells. Recently, the Th1/Th2 paradigm of T helper (Th) cells differentiation has been expanded following the discovery of a third subset of effector Th cells that produce IL-17 (Th17). Regulatory T (Treg) cells have a remarkable ability to prevent naïve T cell differentiation into Th1 and Th2 cells and to suppress immune responses driven by Th1 and Th2 effector cells. The role of Treg cells in regulating IL-17 production remains undetermined. Some studies suggest that Treg cells may promote differentiation of naïve T cells into Th17 cells in the context of inflammatory cytokine milieu. The aim of our present study was to determine the role of Treg cells and conventional CD4+ T cells (Tconv) in the differentiation of IL-17 producing cells in the absence of exogenous cytokines and insults. Naïve Tconv cells stimulated with anti-CD3 mAb in the presence of antigen presenting cells (APCs) secreted significant amounts of IFN-γ and IL-4 but no detectable levels of IL-17, whereas Treg cells were incapable of producing any of these cytokines under the same culture conditions. Production of IFN-γ and IL-4 was significantly reduced by addition of Treg cells in the cultures of Tconv cells with anti-CD3 mAb and APC. In contrast, production of IL-17 was considerably enhanced in these co-culture conditions and the level of IL-17 displayed a positive correlation with the number of Treg cells added in the culture. To evaluate whether TCR-mediated stimulation of both Treg and Tconv cells was required for IL-17 production, we used Tconv cells and Treg cells from two different TCR transgenic mouse strains in H-2b background, 2D2 (MOG35-55-specific) and OT-II (OVA323-339-specific), respectively, and co-cultured them in the presence of APCs (H-2b). Production of IL-17 was not observed when either MOG peptide or OVA peptide alone was added in the cultures. In contrast, addition of both MOG and OVA resulted in production of IL-17, suggesting that simultaneous activation of Tconv and Treg cells was essential for induction of IL-17. To determine the source of IL-17 during co-culture of Treg and Tconv cells, we purified Treg cells from C57/B6 mice and co-cultured them with Tconv cells from the B6 congenic mouse strain B6.PL, which carry the Thy1a (Thy1.1) allele and can be easily recognized by flow cytomeric analysis using a Thy1.1-specific mAb. Detailed evaluation during co-culture revealed that a significant proportion of Thy1.1- T cells (the source of Treg) gradually downregulated expression of Foxp3 while obtaining expression of IL-17. In contrast, there was no significant change in the expression of either Foxp3 or IL-17 in the Thy1.1+ population (the source of Tconv), suggesting that Treg was the main source of IL-17 when stimulated in the presence of antigen and activated Tconv cells. Several cytokines have been implicated in the induction of IL-17, in particular, TGF-β. For this reason, we investigated the potential involvement of TGF-β in this conversion process. Addition of TGF-β to Tconv cultured with APCs and anti-CD3 mAb in the absence of Treg cells resulted in upregulation of Foxp3 but not IL-17. In contrast, addition of TGF-β neutralizing antibody to Tconv cultured with APC and anti-CD3 mAb in the presence of Treg, suppressed IL-17 production. Moreover, assessment of TGF-β signaling in Tconv and Treg cells revealed a dramatically increased level of Smad3 phosphorylation in Treg compared to Tconv cells, indicating a reduced threshold of TGF-β mediated signaling in Treg cells. Taken together, our data indicate that reciprocal interactions of Treg and Tconv cells are required for conversion of Treg into IL-17 producing cells and that TGF-β-mediated signaling is required for this process. In addition, our results provide evidence that Treg may convert into proinflammatory effectors producing IL-17, under conditions that promote Tconv differentiation into Treg cells. These observations provide a new dimension to our understanding of Treg cells functions and may have important implications in therapeutic strategies using Treg cells. Disclosures: No relevant conflicts of interest to declare.


2000 ◽  
Vol 191 (2) ◽  
pp. 375-380 ◽  
Author(s):  
Hisaya Akiba ◽  
Yasushi Miyahira ◽  
Machiko Atsuta ◽  
Kazuyoshi Takeda ◽  
Chiyoko Nohara ◽  
...  

Infection of inbred mouse strains with Leishmania major is a well characterized model for analysis of T helper (Th)1 and Th2 cell development in vivo. In this study, to address the role of costimulatory molecules CD27, CD30, 4-1BB, and OX40, which belong to the tumor necrosis factor receptor superfamily, in the development of Th1 and Th2 cells in vivo, we administered monoclonal antibody (mAb) against their ligands, CD70, CD30 ligand (L), 4-1BBL, and OX40L, to mice infected with L. major. Whereas anti-CD70, anti-CD30L, and anti–4-1BBL mAb exhibited no effect in either susceptible BALB/c or resistant C57BL/6 mice, the administration of anti-OX40L mAb abrogated progressive disease in BALB/c mice. Flow cytometric analysis indicated that OX40 was expressed on CD4+ T cells and OX40L was expressed on CD11c+ dendritic cells in the popliteal lymph nodes of L. major–infected BALB/c mice. In vitro stimulation of these CD4+ T cells showed that anti-OX40L mAb treatment resulted in substantially reduced production of Th2 cytokines. Moreover, this change in cytokine levels was associated with reduced levels of anti–L. major immunoglobulin (Ig)G1 and serum IgE. These results indicate that anti-OX40L mAb abrogated progressive leishmaniasis in BALB/c mice by suppressing the development of Th2 responses, substantiating a critical role of OX40–OX40L interaction in Th2 development in vivo.


2017 ◽  
Vol 114 (1) ◽  
pp. 180-187 ◽  
Author(s):  
Daniel Engelbertsen ◽  
Sara Rattik ◽  
Maria Wigren ◽  
Jenifer Vallejo ◽  
Goran Marinkovic ◽  
...  

Abstract Aims The role of CD4+ T cells in atherosclerosis has been shown to be dependent on cytokine cues that regulate lineage commitment into mature T helper sub-sets. In this study, we tested the roles of IL-1R1 and MyD88 signalling in CD4+ T cells in atherosclerosis. Methods and results We transferred apoe-/-myd88+/+ or apoe-/-myd88-/- CD4+ T cells to T- and B-cell-deficient rag1-/-apoe-/- mice fed high fat diet. Mice given apoe-/-myd88-/- CD4+ T cells exhibited reduced atherosclerosis compared with mice given apoe-/-myd88+/+ CD4+ T cells. CD4+ T cells from apoe-/-myd88-/- produced less IL-17 but similar levels of IFN-γ. Treatment of human CD4+ T cells with a MyD88 inhibitor inhibited IL-17 secretion in vitro. Transfer of il1r1-/- CD4+ T cells recapitulated the phenotype seen by transfer of myd88-/- CD4+ T cells with reduced lesion development and a reduction in Th17 and IL-17 production compared with wild type CD4+ T cell recipients. Relative collagen content of lesions was reduced in mice receiving il1r1-/- CD4+ T cells. Conclusion We demonstrate that both IL1R and MyD88 signalling in CD4+ T cells promote Th17 immunity, plaque growth and may regulate plaque collagen levels.


2000 ◽  
Vol 191 (5) ◽  
pp. 847-858 ◽  
Author(s):  
Ryuta Nishikomori ◽  
Rolf O. Ehrhardt ◽  
Warren Strober

The differentiation of CD4+ T cells into T helper type 1 (Th1) cells is driven by interleukin (IL)-12 through the IL-12 receptor β2 (IL-12Rβ2) chain, whereas differentiation into Th2 cells is driven by IL-4, which downregulates IL-12Rβ2 chain. We reexamined such differentiation using IL-12Rβ2 chain transgenic mice. We found that CD4+ T cells from such mice were able to differentiate into Th2 cells when primed with IL-4 or IL-4 plus IL-12. In the latter case, the presence of IL-4 suppressed interferon (IFN)-γ production 10–100-fold compared with cells cultured in IL-12 alone. Finally, in studies of the ability of IL-12 to convert Th2 cells bearing a competent IL-12R to the Th1 cells, we showed that: (a) T cells bearing the IL-12Rβ2 chain transgene and primed under Th2 conditions could not be converted to Th1 cells by repeated restimulation under Th1 conditions; and (b) established Th2 clones transfected with the IL-12Rβ2 chain construct continued to produce IL-4 when cultured with IL-12. These studies show that IL-4–driven Th2 differentiation can occur in the presence of persistent IL-12 signaling and that IL-4 inhibits IFN-γ production under these circumstances. They also show that established Th2 cells cannot be converted to Th1 cells via IL-12 signaling.


Author(s):  
Toshinori Nakayama ◽  
Kiyoshi Hirahara ◽  
Motoko Y Kimura ◽  
Chiaki Iwamura ◽  
Masahiro Kiuchi ◽  
...  

Abstract CD4 + T cells direct immune responses against infectious microorganisms but are also involved in the pathogenesis of inflammatory diseases. In the last two to three decades, various researchers have identified and characterized several functional CD4 + T cell subsets, including T-helper 1 (Th1), Th2, Th9 and Th17 cells and regulatory T (Treg) cells. In this mini-review, we introduce the concept of pathogenic Th cells that induce inflammatory diseases with a model of disease induction by a population of pathogenic Th cells; “pathogenic Th population disease-induction model”. We will focus on Th2 cells that induce allergic airway inflammation—pathogenic Th2 cells (Tpath2 cells)—and discuss the nature of Tpath2 cells that shape the pathology of chronic inflammatory diseases. Various Tpath2 cell subsets have been identified and their unique features are summarized in mouse and human systems. Second, we will discuss how Th cells migrate and are maintained in chronic inflammatory lesions. We propose a model known as the “CD69–Myl9 system”. CD69 is a cell surface molecule expressed on activated T cells and interaction with its ligand myosin light chain 9 (Myl9) is required for the induction of inflammatory diseases. Myl9 molecules in the small vessels of inflamed lungs may play a crucial role in the migration of activated T cells into inflammatory lesions. Emerging evidence may provide new insight into the pathogenesis of chronic inflammatory diseases and contribute to the development of new therapeutic strategies for intractable inflammatory disorders.


2000 ◽  
Vol 192 (7) ◽  
pp. 977-986 ◽  
Author(s):  
Gregory Z. Tau ◽  
Thierry von der Weid ◽  
Binfeng Lu ◽  
Simone Cowan ◽  
Marina Kvatyuk ◽  
...  

One mechanism regulating the ability of different subsets of T helper (Th) cells to respond to cytokines is the differential expression of cytokine receptors. For example, Th2 cells express both chains of the interferon γ receptor (IFN-γR), whereas Th1 cells do not express the second chain of the IFN-γR (IFN-γR2) and are therefore unresponsive to IFN-γ. To determine whether the regulation of IFN-γR2 expression, and therefore IFN-γ responsiveness, is important for the differentiation of naive CD4+ T cells into Th1 cells or for Th1 effector function, we generated mice in which transgenic (TG) expression of IFN-γR2 is controlled by the CD2 promoter and enhancer. CD4+ T cells from IFN-γR2 TG mice exhibit impaired Th1 polarization potential in vitro. TG mice also display several defects in Th1-dependent immunity in vivo, including attenuated delayed-type hypersensitivity responses and decreased antigen-specific IFN-γ production. In addition, TG mice mount impaired Th1 responses against Leishmania major, as manifested by increased parasitemia and more severe lesions than their wild-type littermates. Together, these data suggest that the sustained expression of IFN-γR2 inhibits Th1 differentiation and function. Therefore, the acquisition of an IFN-γ–unresponsive phenotype in Th1 cells plays a crucial role in the development and function of these cells.


1998 ◽  
Vol 188 (9) ◽  
pp. 1651-1656 ◽  
Author(s):  
Adil E. Wakil ◽  
Zhi-En Wang ◽  
James C. Ryan ◽  
Deborah J. Fowell ◽  
Richard M. Locksley

Interferon γ (IFN-γ) has been implicated in T helper type 1 (Th1) cell development through its ability to optimize interleukin 12 (IL-12) production from macrophages and IL-12 receptor expression on activated T cells. Various systems have suggested a role for IFN-γ derived from the innate immune system, particularly natural killer (NK) cells, in mediating Th1 differentiation in vivo. We tested this requirement by reconstituting T cell and IFN-γ doubly deficient mice with wild-type CD4+ T cells and challenging the mice with pathogens that elicited either minimal or robust IL-12 in vivo (Leishmania major or Listeria monocytogenes, respectively). Th1 cells developed under both conditions, and this was unaffected by the presence or absence of IFN-γ in non-T cells. Reconstitution with IFN-γ–deficient CD4+ T cells could not reestablish control over L. major, even in the presence of IFN-γ from the NK compartment. These data demonstrate that activated T cells can maintain responsiveness to IL-12 through elaboration of endogenous IFN-γ without requirement for an exogenous source of this cytokine.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2561-2561
Author(s):  
Joseph H. Chewning ◽  
Weiwei Zhang ◽  
Trenton Schoeb ◽  
Casey Weaver

Abstract The Th1 and Th2 lineages of CD4+ T helper cells are essential for control of host infection. Both lineages respond to antigenic stimulation with distinct effector functions and cytokine profiles. Differential homing patterns permit localization within specific tissue sites where these cells interact with other immune cells to promote the immune response. Variability in T helper lineage homing is due, in part, to differing chemokine receptor expression patterns. This laboratory and others recently described another CD4+ T helper lineage, Th17. Following stimulation, Th17 cells also produce a unique cytokine profile, including interleukin (IL)-17, IL-21, and IL-22. The Th17 lineage has now been implicated in the pathogenesis of several human autoimmune diseases, including psoriasis and inflammatory bowel disease, and appears to be critical for the inflammation of both the skin and gastrointestinal tract, respectively, seen in these diseases. It is not well understood whether Th17 cells arise within the inflammatory milieu in these tissues, or whether these cells possess a distinct homing pattern. We have performed studies using in vitro polarized Th17 cells for the study of tissue homing patterns in vivo. Experiments were performed using the well-described HLA Class II-disparate C57BL/6 (B6) to B6.C-H-2bm12 (bm12) model. Previous studies have established CD4+ T cell-dependent inflammation in this model. Naïve CD4+ T cells from B6 mice were polarized to the Th17 lineage in vitro using standard techniques, including IL-6 and TGF-β. FACS analysis of the Th17 cells prior to adoptive transfer revealed IL-17-positive staining in >60% cells and IFN-γ-positivity in <10%. Th17 or Th2-polarized control cells (1 × 106) were transferred into lethally irradiated bm12 mice (or syngeneic B6 control mice). Mice receiving Th17 cells demonstrated weight gain in the initial weeks compared to Th2 control recipients, but less than B6 syngeneic recipients. The Th17 recipients appeared less active, however, and most mice in this group eventually became moribund, requiring euthanasia. Complete necropsy was performed on mice from each group at intervals following transfer. Tissue analysis in the Th17 recipients revealed marked inflammation within the lungs, skin, liver, and gastrointestinal tract. Syngeneic B6 recipients of Th17 cells also demonstrated a similar tissue pattern, but with markedly reduced inflammation. Tissues from the bm12 Th2-polarized cell control mice, as well as T cell depleted marrow alone recipients did not demonstrate significant inflammation. Additional time course experiments revealed the initial target organs affected as the lungs and stomach, with subsequent involvement of other affected organs. FACS analysis of recipient hematopoietic tissues, using CD45.1 isotype distinction, revealed Th17 cell proliferation within the bm12 allogeneic recipients compared to the B6 syngeneic recipient mice (25–35% total cells of donor origin compared to 2–8%, respectively). CD4+ T cell counts performed on recipient spleens confirmed increased proliferation of Th17 cells within the allogeneic recipient compared to Th2 allogeneic and Th17 syngeneic controls (108 total donor-derived cells compared to 106 and 107, respectively). Cytokine analysis was performed by FACS on CD4+ T cells harvested from tissues. In contrast to pre-transfer analysis, the transferred CD4+ T cells harvested from allogeneic bm12 recipients secreted increased amounts of IFN-γ (12–33%) concomitant with a decrease in IL-17 production. Our studies demonstrate that Th17 CD4+ T cells are able to home to mucosal sites of early antigen encounter, in both the allogeneic and syngeneic setting. This pattern is consistent with the known role of IL-17 in innate immune response to infection. In the setting of chronic T cell stimulation, we also observed that Th17 cells can transition to a Th1-like, IFN-γ-producing CD4+ T cell. The skin, lungs, and GI tract are important sites of initial antigen encounter, and understanding the CD4+ Th17 T cell homing and proliferation patterns could have important implications in understanding both innate and adaptive immune responses to acute infection. Ongoing studies are underway to identify the role of specific chemokine receptors responsible for Th17 homing.


2002 ◽  
Vol 196 (1) ◽  
pp. 39-49 ◽  
Author(s):  
Sean Diehl ◽  
Chi-Wing Chow ◽  
Linda Weiss ◽  
Alois Palmetshofer ◽  
Thomas Twardzik ◽  
...  

Interleukin (IL)-6 is produced by professional antigen-presenting cells (APCs) such as B cells, macrophages, and dendritic cells. It has been previously shown that APC-derived IL-6 promotes the differentiation of naive CD4+ T cells into effector T helper type 2 (Th2) cells. Here, we have studied the molecular mechanism for IL-6–mediated Th2 differentiation. During the activation of CD4+ T cells, IL-6 induces the production of IL-4, which promotes the differentiation of these cells into effector Th2 cells. Regulation of IL-4 gene expression by IL-6 is mediated by nuclear factor of activated T cells (NFAT), as inhibition of NFAT prevents IL-6–driven IL-4 production and Th2 differentiation. IL-6 upregulates NFAT transcriptional activity by increasing the levels of NFATc2. The ability of IL-6 to promote Th2 differentiation is impaired in CD4+ T cells that lack NFATc2, demonstrating that NFATc2 is required for regulation of IL-4 gene expression by IL-6. Regulation of NFATc2 expression and NFAT transcriptional activity represents a novel pathway by which IL-6 can modulate gene expression.


2003 ◽  
Vol 10 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Adam F. Cunningham ◽  
Kai-Michael Toellner

The paradigm of T helper-1 (Th-1) and Th-2 cells developing from non-committed naïve precursors is firmly established. Th1 cells are characterized by IFN production and, in mice, the selective switching to IgG2a. Conversely IL-4 production and selective switching to IgG1 and IgE characterize Th2 cells. Analysis of Th2 inductionin vitroindicates that this polarization develops gradually in T cells activated by anti-CD3 in the presence of IL-4; conversely anti-CD3 and IFN induce Th1 cells. In this report, we explore evidence that indicates that the T helper cell polarizationin vivocannot solely be explained by the cytokine environment. This is provided by studying the early acquisition of Th1 and Th2 activities during responses to a mixture of Th1 and Th2-inducing antigens. It is shown that these divergent forms of T cell help can rapidly develop in cells within a single lymph node. It is argued that early polarization to show Th-1 or Th-2 behavior can be induced by signals delivered during cognate interaction between virgin T cells and dendritic cells, in the absence of type 1 or type 2 cytokines. This contrasts with the critical role of the cytokines in reinforcing the Th-phenotype and selectively expanding T helper clones.


Sign in / Sign up

Export Citation Format

Share Document