scholarly journals Basolateral Na(+)-H+ antiporter. Mechanisms of electroneutral and conductive ion transport.

1994 ◽  
Vol 103 (5) ◽  
pp. 895-916 ◽  
Author(s):  
M A Post ◽  
D C Dawson

The basolateral Na-H antiporter of the turtle colon exhibits both conductive and electroneutral Na+ transport (Post and Dawson. 1992. American Journal of Physiology. 262:C1089-C1094). To explore the mechanism of antiporter-mediated current flow, we compared the conditions necessary to evoke conduction and exchange, and determined the kinetics of activation for both processes. Outward (cell to extracellular fluid) but not inward (extracellular fluid to cell) Na+ or Li+ gradients promoted antiporter-mediated Na+ or Li+ currents, whereas an outwardly directed proton gradient drove inward Na+ or Li+ currents. Proton gradient-driven, "counterflow" current is strong evidence for an exchange stoichiometry of > 1 Na+ or Li+ per proton. Consistent with this notion, outward Na+ and Li+ currents generated by outward Na+ or Li+ gradients displayed sigmoidal activation kinetics. Antiporter-mediated proton currents were never observed, suggesting that only a single proton was transported per turnover of the antiporter. In contrast to Na+ conduction, Na+ exchange was driven by either outwardly or inwardly directed Na+, Li+, or H+ gradients, and the activation of Na+/Na+ exchange was consistent with Michaelis-Menten kinetics (K1/2 = 5 mM). Raising the extracellular fluid Na+ or Li+ concentration, but not extracellular fluid proton concentration, inhibited antiporter-mediated conduction and activated Na+ exchange. These results are consistent with a model for the Na-H antiporter in which the binding of Na+ or Li+ to a high-affinity site gives rise to one-for-one cation exchange, but the binding of Na+ or Li+ ions to other, lower-affinity sites can give rise to a nonunity, cation exchange stoichiometry and, hence, the net translocation of charge. The relative proportion of conductive and nonconductive events is determined by the magnitude and orientation of the substrate gradient and by the serosal concentration of Na+ or Li+.

2012 ◽  
Vol 12 (21) ◽  
pp. 10239-10255 ◽  
Author(s):  
L. T. Padró ◽  
R. H. Moore ◽  
X. Zhang ◽  
N. Rastogi ◽  
R. J. Weber ◽  
...  

Abstract. Aerosol composition and mixing state near anthropogenic sources can be highly variable and can challenge predictions of cloud condensation nuclei (CCN). The impacts of chemical composition on CCN activation kinetics is also an important, but largely unknown, aspect of cloud droplet formation. Towards this, we present in-situ size-resolved CCN measurements carried out during the 2008 summertime August Mini Intensive Gas and Aerosol Study (AMIGAS) campaign in Atlanta, GA. Aerosol chemical composition was measured by two particle-into-liquid samplers measuring water-soluble inorganic ions and total water-soluble organic carbon. Size-resolved CCN data were collected using the Scanning Mobility CCN Analysis (SMCA) method and were used to obtain characteristic aerosol hygroscopicity distributions, whose breadth reflects the aerosol compositional variability and mixing state. Knowledge of aerosol mixing state is important for accurate predictions of CCN concentrations and that the influence of an externally-mixed, CCN-active aerosol fraction varies with size from 31% for particle diameters less than 40 nm to 93% for accumulation mode aerosol during the day. Assuming size-dependent aerosol mixing state and size-invariant chemical composition decreases the average CCN concentration overprediction (for all but one mixing state and chemical composition scenario considered) from over 190–240% to less than 20%. CCN activity is parameterized using a single hygroscopicity parameter, κ, which averages to 0.16 ± 0.07 for 80 nm particles and exhibits considerable variability (from 0.03 to 0.48) throughout the study period. Particles in the 60–100 nm range exhibited similar hygroscopicity, with a κ range for 60 nm between 0.06–0.076 (mean of 0.18 ± 0.09). Smaller particles (40 nm) had on average greater κ, with a range of 0.20–0.92 (mean of 0.3 ± 0.12). Analysis of the droplet activation kinetics of the aerosol sampled suggests that most of the CCN activate as rapidly as calibration aerosol, suggesting that aerosol composition exhibits a minor (if any) impact on CCN activation kinetics.


Author(s):  
Fiona J. Laraman ◽  
Heidi Fisk ◽  
David T. E. Whittaker ◽  
Janette H. Cherryman ◽  
Louis J. Diorazio

2000 ◽  
Vol 47 (1) ◽  
pp. 59-64
Author(s):  
T Kryczka ◽  
P Grieb ◽  
M Bero ◽  
J Kasperczyk ◽  
P Dobrzynski

We assessed the rate of release of a model nucleoside (adenosine, 5%, w/w) from nine different lactide-glycolide or lactide-caprolactone polymers. The polymer discs were eluted every second day with an artificial cerebrospinal fluid at the elution rate roughly approximating the brain extracellular fluid formation rate. Adenosine in eluate samples was assayed by HPLC. Three polymers exhibited a relatively constant release of adenosine for over four weeks, resulting in micromolar concentrations of nucleoside in the eluate. This points to the necessity of further development of polymers of this types as intracerebral nucleoside delivery systems for local treatment of brain tumors.


Soil Systems ◽  
2018 ◽  
Vol 2 (3) ◽  
pp. 46 ◽  
Author(s):  
Eleanor Bakker ◽  
Fabien Hubert ◽  
Michelle M. Wander ◽  
Bruno Lanson

Impact of continuous cropping on clay mineralogy was assessed on a collection of unfertilized soil samples from the Morrow Plots experimental fields covering 110 years of long crop rotations. Evolution of mineralogy was quantitatively determined by fitting X-ray diffraction (XRD) patterns from four size fractions (50–2, 2–0.2, 0.2–0.05 and <0.05 µm) of the surface horizon (0–20 cm). The mineralogy of the three clay subfractions (2–0.2 µm, 0.2–0.05 µm and <0.05 µm) consists mainly of coexisting illite-smectite-chlorite whose compositions range from discrete illite (in the 2–0.2 µm subfraction) to discrete smectite (in the <0.05 µm subfraction). Mixed layers of similar compositions were used to fit XRD data from all clay subfractions. With decreasing size fractions, both the size of the coherent scattering domains and the proportion of illite-rich mixed layers decrease, thus accounting for the higher cation exchange measured in the <0.05 µm subfraction compared to other clay subfractions. The analysis of fine clay subfractions (<0.2 µm or lower) provided key information and constraints to a complete and accurate description of the bulk <2 µm fraction. Additional constraints derived from chemical treatments (K-saturation and heating) proved to be especially useful to propose a reliable structure model for these fine clay subfractions because of their weakly modulated diffraction signature. Mineralogy of all subfractions considered is essentially stable over the studied period (1904–2014), with the relative proportion of the different clay layer types (illite, smectite, kaolinite, chlorite) showing no significant evolution in the bulk <2 µm fraction. A century of continuous cropping thus results essentially in an increase of fine clay particles (<0.05 µm) and a decrease of the 0.2–0.05 µm subfraction, indicative of clay mineral dissolution and consistent with observed increase of cation exchange capacity with time. The relative proportion of the bulk <2 µm fraction is nearly constant over the studied period, indicative of minimal export of clay phases.


Sign in / Sign up

Export Citation Format

Share Document