brain extracellular fluid
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 8)

H-INDEX

21
(FIVE YEARS 1)

Author(s):  
Mo'tasem Mohamed Alsmadi ◽  
Laith Naser AL-Eitan ◽  
Nasir Mohammed Idkaidek ◽  
Karem Hasan Alzoubi

Background: Atomoxetine is a treatment for attention-deficit hyperactivity disorder. It inhibits norepinephrine transporters (NET) in the brain. Renal impairment can reduce hepatic CYP2D6 activity and atomoxetine elimination which may increase its body exposure. Atomoxetine can be secreted in saliva. Objective: The objective of this work was to test the hypothesis that atomoxetine saliva levels (sATX) can be used to predict ATX brain extracellular fluid (bECF) levels and their pharmacological effects in healthy subjects and those with end-stage renal disease (ESRD). Methods: The pharmacokinetics of atomoxetine after intravenous administration to rats with chemically induced acute and chronic renal impairments were investigated. A physiologically-based pharmacokinetic (PBPK) model was built and verified in rats using previously published measured atomoxetine levels in plasma and brain tissue. The rat PBPK model was then scaled to humans and verified using published measured atomoxetine levels in plasma, saliva, and bECF. Results: The rat PBPK model predicted the observed reduced atomoxetine clearance due to renal impairment in rats. The PBPK model predicted atomoxetine exposure in human plasma, sATX, and bECF. Additionally, it predicted that ATX bECF levels needed to inhibit NET are achieved at 80 mg dose. In ESRD patients, the developed PBPK model predicted that the previously reported 65% increase in plasma exposure in these patients could be associated with a 63% increase in bECF. The PBPK simulations showed that there is a significant correlation between sATX and bECF in humans. Conclusion: Saliva levels can be used to predict atomoxetine pharmacological response.


Author(s):  
Mohammed A. A. Saleh ◽  
Chi Fong Loo ◽  
Jeroen Elassaiss-Schaap ◽  
Elizabeth C. M. De Lange

AbstractPredicting brain pharmacokinetics is critical for central nervous system (CNS) drug development yet difficult due to ethical restrictions of human brain sampling. CNS pharmacokinetic (PK) profiles are often altered in CNS diseases due to disease-specific pathophysiology. We previously published a comprehensive CNS physiologically-based PK (PBPK) model that predicted the PK profiles of small drugs at brain and cerebrospinal fluid compartments. Here, we improved this model with brain non-specific binding and pH effect on drug ionization and passive transport. We refer to this improved model as Leiden CNS PBPK predictor V3.0 (LeiCNS-PK3.0). LeiCNS-PK3.0 predicted the unbound drug concentrations of brain ECF and CSF compartments in rats and humans with less than two-fold error. We then applied LeiCNS-PK3.0 to study the effect of altered cerebrospinal fluid (CSF) dynamics, CSF volume and flow, on brain extracellular fluid (ECF) pharmacokinetics. The effect of altered CSF dynamics was simulated using LeiCNS-PK3.0 for six drugs and the resulting drug exposure at brain ECF and lumbar CSF were compared. Simulation results showed that altered CSF dynamics changed the CSF PK profiles, but not the brain ECF profiles, irrespective of the drug’s physicochemical properties. Our analysis supports the notion that lumbar CSF drug concentration is not an accurate surrogate of brain ECF, particularly in CNS diseases. Systems approaches account for multiple levels of CNS complexity and are better suited to predict brain PK.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0246997
Author(s):  
Nicholas W. Loxton ◽  
Ursula K. Rohlwink ◽  
Mvuwo Tshavhungwe ◽  
Lindizwe Dlamini ◽  
Muki Shey ◽  
...  

Tuberculous meningitis (TBM) is the most fatal form of tuberculosis and frequently occurs in children. The inflammatory process initiates secondary brain injury processes that lead to death and disability. Much remains unknown about this cerebral inflammatory process, largely because of the difficulty in studying the brain. To date, studies have typically examined samples from sites distal to the site of disease, such as spinal cerebrospinal fluid (CSF) and blood. In this pilot study, we examined the feasibility of using direct brain microdialysis (MD) to detect inflammatory mediators in brain extracellular fluid (ECF) in TBM. MD was used to help guide neurocritical care in 7 comatose children with TBM by monitoring brain chemistry for up to 4 days. Remnant ECF fluid was stored for offline analysis. Samples of ventricular CSF, lumbar CSF and blood were collected at clinically indicated procedures for comparison. Inflammatory mediators were quantified using multiplex technology. All inflammatory markers, with the exception of interleukin (IL)-10 and IL-12p40, were detected in the ECF. Cytokine concentrations were generally lower in ECF than ventricular CSF in time-linked specimens. Individual cases showed ECF cytokine increases coinciding with marked increases in ECF glycerol or decreases in ECF glucose. Cytokine levels and glycerol were generally higher in patients with more severe disease. This is the first report of inflammatory marker analysis from samples derived directly from the brain and in high temporal resolution, demonstrating feasibility of cerebral MD to explore disease progression and possibly therapy response in TBM.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1236
Author(s):  
Keisuke Tachibana ◽  
Yumi Iwashita ◽  
Erika Wakayama ◽  
Itsuki Nishino ◽  
Taiki Nishikaji ◽  
...  

The blood-brain barrier (BBB), which is composed of endothelial cells, pericytes, astrocytes, and neurons, separates the brain extracellular fluid from the circulating blood, and maintains the homeostasis of the central nervous system (CNS). The BBB endothelial cells have well-developed tight junctions (TJs) and express specific polarized transport systems to tightly control the paracellular movements of solutes, ions, and water. There are two types of TJs: bicellular TJs (bTJs), which is a structure at the contact of two cells, and tricellular TJs (tTJs), which is a structure at the contact of three cells. Claudin-5 and angulin-1 are important components of bTJs and tTJs in the brain, respectively. Here, we review TJ-modulating bioprobes that enable drug delivery to the brain across the BBB, focusing on claudin-5 and angulin-1.


2020 ◽  
Vol 43 (12) ◽  
pp. 1975-1978
Author(s):  
Haruna Tamano ◽  
Junichi Togo ◽  
Yuichi Sato ◽  
Aoi Shioya ◽  
Munekazu Tempaku ◽  
...  

IUCrJ ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 729-739 ◽  
Author(s):  
Jeong Kuk Park ◽  
Keon Young Kim ◽  
Yeo Won Sim ◽  
Yong-In Kim ◽  
Jin Kyun Kim ◽  
...  

Ependymin was first discovered as a predominant protein in brain extracellular fluid in fish and was suggested to be involved in functions mostly related to learning and memory. Orthologous proteins to ependymin called ependymin-related proteins (EPDRs) have been found to exist in various tissues from sea urchins to humans, yet their functional role remains to be revealed. In this study, the structures of EPDR1 from frog, mouse and human were determined and analyzed. All of the EPDR1s fold into a dimer using a monomeric subunit that is mostly made up of two stacking antiparallel β-sheets with a curvature on one side, resulting in the formation of a deep hydrophobic pocket. All six of the cysteine residues in the monomeric subunit participate in the formation of three intramolecular disulfide bonds. Other interesting features of EPDR1 include two asparagine residues with glycosylation and a Ca2+-binding site. The EPDR1 fold is very similar to the folds of bacterial VioE and LolA/LolB, which also use a similar hydrophobic pocket for their respective functions as a hydrophobic substrate-binding enzyme and a lipoprotein carrier, respectively. A further fatty-acid binding assay using EPDR1 suggests that it indeed binds to fatty acids, presumablyviathis pocket. Additional interactome analysis of EPDR1 showed that EPDR1 interacts with insulin-like growth factor 2 receptor and flotillin proteins, which are known to be involved in protein and vesicle translocation.


Sign in / Sign up

Export Citation Format

Share Document