scholarly journals In vivo potentiation of post-tetanic twitch across age and sex

2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Mina P. Peyton ◽  
Dawn A. Lowe

Twitch force potentiation of fast-twitch skeletal muscle is produced by repetitive stimulation that can be achieved from either (1) the staircase effect (continual low frequency stimulation) or (2) post-tetanic potentiation (a 1–2 s high-frequency tetanic stimulation). Previous studies examining twitch force potentiation have been conducted in vitro and shown that it is related to phosphorylation of myosin regulatory light chain (pRLC). We previously found, in vitro, reduced potentiation of twitch force and decreased pRLC in ovariectomized (Ovx, estrogen-deficient) compared with sham-operated (estrogen-replete) mice. Thus, we questioned whether this phenomenon occurred in vivo and whether age and sex would affect the potentiation of twitch force. Using an in vivo post-tetanic potentiation method (one twitch contraction followed by a tetanic contraction—100 Hz for 1,000 ms with 0.01 ms pulses, and two post-tetanic twitch contractions), we investigated twitch torque potentiation in C57BL/6 young and old, male and female mice. There were significant main effects of sex (P < 0.001) and age (P < 0.001) on body mass and significant main effects of sex (P < 0.001) on tibialis anterior and extensor digitorum longus muscle masses, with males and aged being relatively greater. Analysis of twitch torque using a three-way ANOVA across time, age, and sex showed a significant main effect of time (pre < post; P < 0.001), time × age (P = 0.038), and time × sex (P = 0.028), indicating potentiation occurred in young and old, males and females. Analysis of twitch torque potentiation (percent increase) using a two-way ANOVA revealed a significant main effect of age (young = 45.16 ± 2.04 versus old = 27.88 ± 9.96; P < 0.001) with no effect of sex (P = 0.215). In summary, enhanced generation of twitch force of skeletal muscle using a post-tetanic potentiation method does occur in vivo and is affected by age but not sex, as there is greater twitch torque potentiation in young than old mice.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Matthew R. Stewart ◽  
Hans C. Dringenberg

Long-term depression (LTD), a widely studied form of activity-dependent synaptic plasticity, is typically induced by prolonged low-frequency stimulation (LFS). Interestingly, LFS is highly effective in eliciting LTDin vitro, but much less so underin vivoconditions; the reasons for the resistance of the intact brain to express LTD are not well understood. We examined if levels of background electrocorticographic (ECoG) activity influence LTD induction in the thalamocortical visual system of rats under very deep urethane anesthesia, inducing a brain state of reduced spontaneous cortical activity. Under these conditions, LFS applied to the lateral geniculate nucleus resulted in LTD of field postsynaptic potentials (fPSPs) recorded in the primary visual cortex (V1). Pairing LFS with stimulation of the brainstem (pedunculopontine) reticular formation resulted in the appearance of faster, more complex activity in V1 and prevented LTD induction, an effect that did not require muscarinic or nicotinic receptors. Reticular stimulation alone (without LFS) had no effect on cortical fPSPs. These results show that excitation of the brainstem activating system blocks the induction of LTD in V1. Thus, higher levels of neural activity may inhibit depression at cortical synapses, a hypothesis that could explain discrepancies regarding LTD induction in previousin vivoandin vitrowork.


CNS Spectrums ◽  
1997 ◽  
Vol 2 (1) ◽  
pp. 54-60 ◽  
Author(s):  
R. M. Post ◽  
T. Kimbrell ◽  
M. Frye ◽  
M. George ◽  
U. McCann ◽  
...  

AbstractKindling involves repeated administration of brief high-frequency electrophysiological stimulation of the brain at initially subthreshold intensities that eventually evoke full-blown seizures. It has thus been used not only as a model of epileptogenesis, but of long-term neuronal memory. Quenching is a phenomenon that utilizes low-frequency stimulation for much longer periods of time (eg, 1 Hz for 15 minutes), and appears to exert preventive effects on the development of kindling and inhibit the manifestation of full-blown kindled seizures by markedly increasing the amygdala afterdischarge and seizure threshold. (See also “Kindling and Quenching: Conceptual Implications for rTMS,” by Weiss and Post, page 32). The parameters of kindling and quenching with intracerebral stimulation of the amygdala in vivo are highly similar to those achieved in vitro in hippocampai slice preparations for inducing long-term potentiation (LTP) and longterm depression (LTD), respectively. These neuroplastic changes are relatively long lasting and appear reversible at the level of synaptic function with either LTD or LTP capable of countering the effects of the other.


2000 ◽  
Vol 279 (3) ◽  
pp. C639-C647 ◽  
Author(s):  
Karim R. Sultan ◽  
Bernd T. Dittrich ◽  
Dirk Pette

Fiber-type transitions in adult skeletal muscle induced by chronic low-frequency stimulation (CLFS) encompass coordinated exchanges of myofibrillar protein isoforms. CLFS-induced elevations in cytosolic Ca2+ could activate proteases, especially calpains, the major Ca2+-regulated cytosolic proteases. Calpain activity determined by a fluorogenic substrate in the presence of unaltered endogenous calpastatin activities increased twofold in low-frequency-stimulated extensor digitorum longus (EDL) muscle, reaching a level intermediate between normal fast- and slow-twitch muscles. μ- and m-calpains were delineated by a calpain-specific zymographical assay that assessed total activities independent of calpastatin and distinguished between native and processed calpains. Contrary to normal EDL, structure-bound, namely myofibrillar and microsomal calpains, were abundant in soleus muscle. However, the fast-to-slow conversion of EDL was accompanied by an early translocation of cytosolic μ-calpain, suggesting that myofibrillar and microsomal μ-calpain was responsible for the twofold increase in activity and thus involved in controlled proteolysis during fiber transformation. This is in contrast to muscle regeneration where m-calpain translocation predominated. Taken together, we suggest that translocation is an important step in the control of calpain activity in skeletal muscle in vivo.


2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Sally A. Marik ◽  
Peter W. Hickmott

Horizontal connections in superficial cortical layers integrate information across sensory maps by connecting related functional columns. It has been hypothesized that these connections mediate cortical reorganization via synaptic plasticity. However, it is not known if the horizontal connections from discontinuous cortical regions can undergo plasticity in the adult. Here we located the border between two discontinuous cortical representations in vivo and used either pairing or low-frequency stimulation to induce synaptic plasticity in the horizontal connections surrounding this border in vitro. Individual neurons revealed significant and diverse forms of synaptic plasticity for horizontal connections within a continuous representation and discontinuous representations. Interestingly, both enhancement and depression were observed following both plasticity paradigms. Furthermore, plasticity was not restricted by the border's presence. Depolarization in the absence of synaptic stimulation also produced synaptic plasticity, but with different characteristics. These experiments suggest that plasticity of horizontal connections may mediate functional reorganization.


2014 ◽  
Author(s):  
◽  
Danny A. Stark

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Skeletal muscle can be isolated into 642 individual muscles and makes up to one third to one half of the mass of the human body. Each of these muscles is specified and patterned prenatally and after birth they will increase in size and take on characteristics suited to each muscle's unique function. To make the muscles functional, each muscle cell must be innervated by a motor neuron, which will also affect the characteristics of the mature muscle. In a healthy adult, muscles will maintain their specialized pattern and function during physiological homeostasis, and will also recapitulate them if the integrity or health of the muscle is disrupted. This repair and regeneration is dependent satellite cells, the skeletal muscle stem cells. In this dissertation, we study a family of receptor tyrosine kinases, Ephs, and their juxtacrine ephrin ligands in the context of skeletal muscle specification and regeneration. First, using a classical ephrin 'stripe' assay to test for contact-mediated repulsion, we found that satellite cells respond to a subset of ephrins with repulsive motility in vitro and that these forward signals through Ephs also promote patterning of differentiating myotubes parallel to ephrin stripes. This pattering can be replicated in a heterologous in vivo system (the hindbrain of the developing quail, where neural crest cells migrate in streams to the branchial arches, and in the forelimb of the developing quail, where presumptive limb myoblasts emigrate from the somite). Second, we present evidence that specific pairwise interactions between Eph receptor tyrosine kinases and ephrin ligands are required to ensure appropriate muscle innervation when it is originally set during postnatal development and when it is recapitulated after muscle or nerve trauma during adulthood. We show expression of a single ephrin, ephrin-A3, exclusively on type I (slow) myofibers shortly after birth, while its receptor EphA8 is only localized to fast motor endplates, suggesting a functional repulsive interaction for motor axon guidance and/or synaptogenesis. Adult EFNA3-/- mutant mice show a significant loss of slow myofibers, while misexpression of ephrin-A3 on fast myofibers results in a switch from a fast fiber type to slow in the context of sciatic nerve injury and regrowth. Third, we show that EphA7 is expressed on satellite cell derived myocytes in vitro, and marks both myocytes and regenerating myofibers in vivo. In the EPHA7 knockout mouse, we find a regeneration defect in a barium chloride injury model starting 3 days post injection in vivo, and that cultured mutant satellite cells are slow to differentiate and divide. Finally, we present other potential Ephs and ephrins that may affect skeletal muscle, such as EphB1 that is expressed on all MyHC-IIb fibers and a subset of MyHC-IIx fibers, and we show a multitude of Ephs and ephrins at the neuromuscular junction that appear to localize on specific myofibers and at different areas of the synapse. We propose that Eph/ephrin signaling, though well studied in development, continues to be important in regulating post natal development, regeneration, and homeostasis of skeletal muscle.


2011 ◽  
Vol 110 (3) ◽  
pp. 695-704 ◽  
Author(s):  
Danielle J. McCullough ◽  
Robert T. Davis ◽  
James M. Dominguez ◽  
John N. Stabley ◽  
Christian S. Bruells ◽  
...  

With advancing age, there is a reduction in exercise tolerance, resulting, in part, from a perturbed ability to match O2 delivery to uptake within skeletal muscle. In the spinotrapezius muscle (which is not recruited during incline treadmill running) of aged rats, we tested the hypotheses that exercise training will 1) improve the matching of O2 delivery to O2 uptake, evidenced through improved microvascular Po2 (PmO2), at rest and throughout the contractions transient; and 2) enhance endothelium-dependent vasodilation in first-order arterioles. Young (Y, ∼6 mo) and aged (O, >24 mo) Fischer 344 rats were assigned to control sedentary (YSED; n = 16, and OSED; n = 15) or exercise-trained (YET; n = 14, and OET; n = 13) groups. Spinotrapezius blood flow (via radiolabeled microspheres) was measured at rest and during exercise. Phosphorescence quenching was used to quantify PmO2 in vivo at rest and across the rest-to-twitch contraction (1 Hz, 5 min) transition in the spinotrapezius muscle. In a follow-up study, vasomotor responses to endothelium-dependent (acetylcholine) and -independent (sodium nitroprusside) stimuli were investigated in vitro. Blood flow to the spinotrapezius did not increase above resting values during exercise in either young or aged groups. Exercise training increased the precontraction baseline PmO2 (OET 37.5 ± 3.9 vs. OSED 24.7 ± 3.6 Torr, P < 0.05); the end-contracting PmO2 and the time-delay before PmO2 fell in the aged group but did not affect these values in the young. Exercise training improved maximal vasodilation in aged rats to acetylcholine (OET 62 ± 16 vs. OSED 27 ± 16%) and to sodium nitroprusside in both young and aged rats. Endurance training of aged rats enhances the PmO2 in a nonrecruited skeletal muscle and is associated with improved vascular smooth muscle function. These data support the notion that improvements in vascular function with exercise training are not isolated to the recruited muscle.


2000 ◽  
Vol 11 (11) ◽  
pp. 3805-3817 ◽  
Author(s):  
Aikaterini Kontrogianni-Konstantopoulos ◽  
Shu-Ching Huang ◽  
Edward J. Benz

The ∼80-kDa erythroid 4.1R protein is a major component of the erythrocyte cytoskeleton, where it links transmembrane proteins to the underlying spectrin/actin complexes. A diverse collection of 4.1R isoforms has been described in nonerythroid cells, ranging from ∼30 to ∼210 kDa. In the current study, we identified the number and primary structure of 4.1R isoforms expressed in adult skeletal muscle and characterized the localization patterns of 4.1R message and protein. Skeletal muscle 4.1R appears to originate solely from the upstream translation initiation codon (AUG-1) residing in exon 2′. Combinations of alternatively spliced downstream exons generate an array of distinct 4.1R spliceoforms. Two major isoform classes of ∼105/110 and ∼135 kDa are present in muscle homogenates. 4.1R transcripts are distributed in highly ordered signal stripes, whereas 4.1R protein(s) decorate the sarcoplasm in transverse striations that are in register with A-bands. An ∼105/110-kDa 4.1R isoform appears to occur in vivo in a supramolecular complex with major sarcomeric proteins, including myosin, α-actin, and α-tropomyosin. In vitro binding assays showed that 4.1R may interact directly with the aforementioned contractile proteins through its 10-kDa domain. All of these observations suggest a topological model whereby 4.1R may play a scaffolding role by anchoring the actomyosin myofilaments and possibly modulating their displacements during contraction/relaxation.


2017 ◽  
Vol 216 (11) ◽  
pp. 3497-3507 ◽  
Author(s):  
Ronald L Neppl ◽  
Chia-Ling Wu ◽  
Kenneth Walsh

Skeletal muscle exhibits remarkable plasticity in its ability to modulate its mass in response to the physiologic changes associated with functional use, systemic disease, and aging. Although a gradual loss of muscle mass normally occurs with advancing age, its increasingly rapid progression results in sarcopenia in a subset of individuals. The identities of muscle-enriched, long noncoding RNAs that regulate this process are unknown. Here, we identify a long noncoding RNA, named Chronos, whose expression in muscle is positively regulated with advancing age and negatively regulated during Akt1-mediated growth. Inhibition of Chronos induces myofiber hypertrophy both in vitro and in vivo, in part, through the epigenetic modulation of Bmp7 signaling.


Sign in / Sign up

Export Citation Format

Share Document