scholarly journals Potassium blocks barium permeation through a calcium-activated potassium channel.

1988 ◽  
Vol 92 (5) ◽  
pp. 549-567 ◽  
Author(s):  
J Neyton ◽  
C Miller

Single high-conductance Ca2+-activated K+ channels from rat skeletal muscle were inserted into planar lipid bilayers, and discrete blocking by the Ba2+ ion was studied. Specifically, the ability of external K+ to reduce the Ba2+ dissociation rate was investigated. In the presence of 150 mM internal K+, 1-5 microM internal Ba2+, and 150 mM external Na+, Ba2+ dissociation is rapid (5 s-1) in external solutions that are kept rigorously K+ free. The addition of external K+ in the low millimolar range reduces the Ba2+ off-rate 20-fold. Other permeant ions, such as Tl+, Rb+, and NH4+ show a similar effect. The half-inhibition constants rise in the order: Tl+ (0.08 mM) less than Rb+ (0.1 mM) less than K+ (0.3 mM) less than Cs+ (0.5 mM) less than NH4+ (3 mM). When external Na+ is replaced by 150 mM N-methyl glucamine, the Ba2+ off-rate is even higher, 20 s-1. External K+ and other permeant ions reduce this rate by approximately 100-fold in the micromolar range of concentrations. Na+ also reduces the Ba2+ off-rate, but at much higher concentrations. The half-inhibition concentrations rise in the order: Rb+ (4 microM) less than K+ (19 microM) much less than Na+ (27 mM) less than Li+ (greater than 50 mM). The results require that the conduction pore of this channel contains at least three sites that may all be occupied simultaneously by conducting ions.

1997 ◽  
Vol 272 (5) ◽  
pp. C1465-C1474 ◽  
Author(s):  
D. H. Needleman ◽  
B. Aghdasi ◽  
A. B. Seryshev ◽  
G. J. Schroepfer ◽  
S. L. Hamilton

The effect of D-erythro-C18-sphingosine (sphingosine) and related compounds on the Ca(2+)-release channel (ryanodine binding protein) was examined on rabbit skeletal muscle membranes, on the purified ryanodine binding protein, and on the channel reconstituted into planar lipid bilayers. Sphingosine inhibited [3H]ryanodine binding to sarcoplasmic reticulum (SR) membranes in a dose-dependent manner similar to published results (R. A. Sabbadini, R. Betto, A. Teresi, G. Fachechi-Cassano, and G. Salviati. J. Biol. Chem. 267: 15475-15484, 1992). The sphingolipid also inhibited [3H]ryanodine binding to the purified ryanodine binding protein. Our results demonstrate that the inhibition of [3H]ryanodine binding by sphingosine is due to an increased rate of dissociation of bound [3H]ryanodine from SR membranes and a decreased rate of association of [3H]ryanodine to the high-affinity site. Unlike other modulators of the Ca(2+)-release channel, sphingosine can remove bound [3H]ryanodine from the high-affinity site within minutes. Sphingosine increased the rate of dissociation of [3H]ryanodine bound to a solubilized proteolytic fragment derived from the carboxy terminus of the ryanodine binding protein (cleavage at Arg4475). Sphingosine also inhibited the activity of the Ca(2+)-release channel incorporated into planar lipid bilayers. Taken together, the data provide evidence for a direct effect of sphingosine on the Ca(2+)-release channel. Sphingosine is a noncompetitive inhibitor at the high-affinity ryanodine binding site, and it interacts with a site between Arg4475 and the carboxy terminus of the Ca(2+)-release channel.


1987 ◽  
Vol 90 (3) ◽  
pp. 427-449 ◽  
Author(s):  
C Miller ◽  
R Latorre ◽  
I Reisin

Voltage-dependent Ca++-activated K+ channels from rat skeletal muscle were reconstituted into planar lipid bilayers, and the kinetics of block of single channels by Ba++ were studied. The Ba++ association rate varies linearly with the probability of the channel being open, while the dissociation rate follows a rectangular hyperbolic relationship with open-state probability. Ba ions can be occluded within the channel by closing the channel with a strongly hyperpolarizing voltage applied during a Ba++-blocked interval. Occluded Ba ions cannot dissociate from the blocking site until after the channel opens. The ability of the closed channel to occlude Ba++ is used as an assay to study the channel's gating equilibrium in the blocked state. The blocked channel opens and closes in a voltage-dependent process similar to that of the unblocked channel. The presence of a Ba ion destabilizes the closed state of the blocked channel, however, by 1.5 kcal/mol. The results confirm that Ba ions block this channel by binding in the K+-conduction pathway. They further show that the blocking site is inaccessible to Ba++ from both the cytoplasmic and external solutions when the channel is closed.


2003 ◽  
Vol 122 (4) ◽  
pp. 407-417 ◽  
Author(s):  
Claudia Kettlun ◽  
Adom González ◽  
Eduardo Ríos ◽  
Michael Fill

Ryanodine receptor (RyR) channels from mammalian cardiac and amphibian skeletal muscle were incorporated into planar lipid bilayers. Unitary Ca2+ currents in the SR lumen-to-cytosol direction were recorded at 0 mV in the presence of caffeine (to minimize gating fluctuations). Currents measured with 20 mM lumenal Ca2+ as exclusive charge carrier were 4.00 and 4.07 pA, respectively, and not significantly different. Currents recorded at 1–30 mM lumenal Ca2+ concentrations were attenuated by physiological [K+] (150 mM) and [Mg2+] (1 mM), in the same proportion (∼55%) in mammalian and amphibian channels. Two amplitudes, differing by ∼35%, were found in amphibian channel studies, probably corresponding to α and β RyR isoforms. In physiological [Mg2+], [K+], and lumenal [Ca2+] (1 mM), the Ca2+ current was just less than 0.5 pA. Comparison of this value with the Ca2+ flux underlying Ca2+ sparks suggests that sparks in mammalian cardiac and amphibian skeletal muscles are generated by opening of multiple RyR channels. Further, symmetric high concentrations of Mg2+ substantially reduced the current carried by 10 mM Ca2+ (∼40% at 10 mM Mg2+), suggesting that high Mg2+ may make sparks smaller by both inhibiting RyR gating and reducing unitary current.


1998 ◽  
Vol 111 (2) ◽  
pp. 343-362 ◽  
Author(s):  
Ricardo A. Bello ◽  
Karl L. Magleby

Ba2+ block of large conductance Ca2+-activated K+ channels was studied in patches of membrane excised from cultures of rat skeletal muscle using the patch clamp technique. Under conditions in which a blocking Ba2+ ion would dissociate to the external solution (150 mM N-methyl-d-glucamine+o, 500 mM K+i, 10 μM Ba2+i, +30 mV, and 100 μM Ca2+i to fully activate the channel), Ba2+ blocks with a mean duration of ∼2 s occurred, on average, once every ∼100 ms of channel open time. Of these Ba2+ blocks, 78% terminated with a single step in the current to the fully open level and 22% terminated with a transition to a subconductance level at ∼0.26 of the fully open level (preopening) before stepping to the fully open level. Only one apparent preclosing was observed in ∼10,000 Ba2+ blocks. Thus, the preopenings represent Ba2+-induced time-irreversible subconductance gating. The fraction of Ba2+ blocks terminating with a preopening and the duration of preopenings (exponentially distributed, mean = 0.75 ms) appeared independent of changes in [Ba2+]i or membrane potential. The fractional conductance of the preopenings increased from 0.24 at +10 mV to 0.39 at +90 mV. In contrast, the average subconductance level during normal gating in the absence of Ba2+ was independent of membrane potential, suggesting different mechanisms for preopenings and normal subconductance levels. Preopenings were also observed with 10 mM Ba2+o and no added Ba2+i. Adding K+, Rb+, or Na+ to the external solution decreased the fraction of Ba2+ blocks with preopenings, with K+ and Rb+ being more effective than Na+. These results are consistent with models in which the blocking Ba2+ ion either induces a preopening gate, and then dissociates to the external solution, or moves to a site located on the external side of the Ba2+ blocking site and acts directly as the preopening gate.


Sign in / Sign up

Export Citation Format

Share Document