New limb-darkening coefficients for modeling binary star light curves

1993 ◽  
Vol 106 ◽  
pp. 2096 ◽  
Author(s):  
W. van Hamme
2018 ◽  
Vol 616 ◽  
pp. A39 ◽  
Author(s):  
P. F. L. Maxted

Context. Inaccurate limb-darkening models can be a significant source of error in the analysis of the light curves for transiting exoplanet and eclipsing binary star systems, particularly for high-precision light curves at optical wavelengths. The power-2 limb-darkening law, Iλ(µ) = 1 − c(1−µα), has recently been proposed as a good compromise between complexity and precision in the treatment of limb-darkening. Aims. My aim is to develop a practical implementation of the power-2 limb-darkening law and to quantify the accuracy of this implementation. Methods. I have used synthetic spectra based on the 3D stellar atmosphere models from the STAGGER-grid to compute the limb-darkening for several passbands (UBVRI, CHEOPS, TESS, Kepler, etc.). The parameters of the power-2 limb-darkening laws are optimized using a least-squares fit to a simulated light curve computed directly from the tabulated Iλ(μ) values. I use the transformed parameters h1 = 1 − c(1 − 2−α) and h2 = c2−α to directly compare these optimized limb-darkening parameters to the limb darkening measured from Kepler light curves of 16 transiting exoplanet systems. Results. The posterior probability distributions (PPDs) of the transformed parameters h1 and h2 resulting from the light curve analysis are found to be much less strongly correlated than the PPDs for c and α. The agreement between the computed and observed values of (h1, h2) is generally very good but there are significant differences between the observed and computed values for Kepler-17, the only star in the sample that shows significant variability between the eclipses due to magnetic activity (star spots). Conclusions. The tabulation of h1 and h2 provided here can be used to accurately model the light curves of transiting exoplanets. I also provide estimates of the priors that should be applied to transformed parameters h1 and h2 based on my analysis of the Kepler light curves of 16 stars with transiting exoplanets.


2020 ◽  
Vol 633 ◽  
pp. A96 ◽  
Author(s):  
M. K. Abubekerov ◽  
N. Yu. Gostev

We present a highly precise calculation of the theoretical light curve and its derivatives for a binary star-planet system in an elliptical orbit. We also describe an analytical fitting by limb-darkening coefficients to reduce the number of parameters for nonlinear fitting. We demonstrate the practical importance of the precision computation of theoretical light curves through the example of the interpretation of the light curve of HD 209458 and the synthetic light curve. We also compare the results obtained using our algorithm to those provided by a lower-precision algorithm to demonstrate the benefits of computing with a higher precision. We discuss the capability of making more accurate conclusions concerning the agreement of the observed light curve with the adopted model.


1996 ◽  
Vol 158 ◽  
pp. 471-472
Author(s):  
Janet H. Wood ◽  
E. L. Robinson ◽  
E.-H. Zhang

BE UMa is a close binary star, not transferring mass, with an extremely hot primary star irradiating the inner face of the cool secondary star. The light curve shows a large-amplitude, sinusoidal variation with a period of 2.29 d, and an eclipse that is centered on the minimum of the variation [1], [3]. According to [1], the eclipse is partial, not total. However, it has been argued [2] that the eclipse was really flat bottomed and thus total. This has important repercussions for the deduced model of the system. To resolve this issue we obtained simultaneous UBVR photometry of BE UMa using the Stiening 4-channel, high-speed photometer on the 82-inch telescope at McDonald Observatory. The mean light curves are shown in Fig. 1. The eclipse in all colours is round bottomed and partial. The different depths are caused by the different contribution from the red secondary star in each bandpass.


2020 ◽  
Vol 159 (3) ◽  
pp. 123 ◽  
Author(s):  
Eric Agol ◽  
Rodrigo Luger ◽  
Daniel Foreman-Mackey
Keyword(s):  

1984 ◽  
Vol 80 ◽  
pp. 387-392
Author(s):  
H. J. Schober

AbstractSince about ten years coordinated programs of photoelectric observations of asteroids are carried out to derive rotation rates and light curves. Quite a number of those asteroids exhibit features in their light curves, with similar characteristics as variable stars and especially eclipsing binaries. This would allow also an interpretation that there might be an evidence for the binary nature of some asteroids, based on observational hints. A few examples are given and a list of indications for the possible binary nature of asteroids, based on their light curve features, is presented.


2012 ◽  
Vol 29 (1) ◽  
pp. 54-65 ◽  
Author(s):  
H. A. Dal ◽  
E. Sipahi ◽  
O. Özdarcan

AbstractWe present BVR observations of DK CVn from 2007 and 2008. We analysed the BVR light curves of the system and obtained the system's parameters. Using the ‘q-search’ method, we measured the mass ratio of the system (q) as 0.55. Taking the temperature of the primary component as 4040 K, the temperature of the secondary was found to be 3123 K. Several flares were detected, and the distributions of flare equivalent duration versus flare total duration were modelled using the One-Phase Exponential Association Function for these flares. The parameters of the model demonstrated that the flares are the same as those detected from UV Ceti stars. We also demonstrate that the variation at out-of-eclipse must be caused by some cool spot(s) on one of the components. The star is found to show two active longitudes in which the spots are mainly formed. Consequently, this study reveals that DK CVn should be a chromospherically active binary star.


2020 ◽  
Vol 638 ◽  
pp. A43
Author(s):  
Kai Rodenbeck ◽  
René Heller ◽  
Laurent Gizon

Context. While the Solar System contains about 20 times more moons than planets, no moon has been confirmed around any of the thousands of extrasolar planets discovered so far. Considering the large computational load required for the statistical vetting of exomoon candidates in a star–planet–moon framework, tools for an uncomplicated identification of the most promising exomoon candidates could be beneficial to streamline follow-up studies. Aims. Here we study three exomoon indicators that emerge if well-established planet-only models are fitted to a planet–moon transit light curve: transit timing variations (TTVs), transit duration variations (TDVs), and apparent planetary transit radius variations (TRVs). We re-evaluate under realistic conditions the previously proposed exomoon signatures in the TTV and TDV series. Methods. We simulated light curves of a transiting exoplanet with a single moon, taking into account stellar limb darkening, orbital inclinations, planet–moon occultations, and noise from both stellar granulation and instrumental effects. These model light curves were then fitted with a planet-only transit model whilst pretending there were no moon, and we explored the resulting TTV, TDV, and TRV series for evidence of the moon. Results. The previously described ellipse in the TTV-TDV diagram of an exoplanet with a moon emerges only for high-density moons. However, low-density moons distort the sinusoidal shapes of the TTV and the TDV series due to their photometric contribution to the combined planet–moon transit. Sufficiently large moons can nevertheless produce periodic apparent TRVs of their host planets that could be observable. We find that Kepler and PLATO have similar performances in detecting the exomoon-induced TRV effect around simulated bright (mV = 8) stars. Although these stars are rare in the Kepler sample, they will be abundant in the PLATO sample. Moreover, PLATO’s higher cadence yields a stronger TTV signal. We detect substantial TRVs of the Saturn-sized planet Kepler-856 b although an exomoon could only ensure Hill stability in a very narrow orbital range. Conclusions. The periodogram of the sequence of transit radius measurements can indicate the presence of a moon. The TTV and TDV series of exoplanets with moons could be more complex than previously assumed. We propose that TRVs could be a more promising means to identify exomoons in large exoplanet surveys.


2008 ◽  
Vol 4 (S253) ◽  
pp. 466-469
Author(s):  
Philip Nutzman ◽  
David Charbonneau ◽  
Joshua N. Winn ◽  
Heather A. Knutson ◽  
Jonathan J. Fortney ◽  
...  

AbstractWe present Spitzer 8 μm transit observations of the extrasolar planet system HD 149026b. At this wavelength, transit light curves are weakly affected by stellar limb-darkening, allowing for a simpler and more accurate determination of planetary parameters. We measure a planet-star radius ratio of Rp/R∗=0.05158±0.00077, and in combination with ground-based data and independent constraints on the stellar mass and radius, we derive an orbital inclination of i = 85°.4+0°.9−0°.8 and a planet radius of 0.755 ± 0.040 RJ. These measurements further support models in which the planet is greatly enriched in heavy elements.


2011 ◽  
Vol 7 (S282) ◽  
pp. 305-306
Author(s):  
Cséki Attila ◽  
Olivera Latković

AbstractInfinity is a new program for modeling binary systems. The model is based on Roche geometry with asynchronous rotation, including an assortment of effects like gravity and limb darkening, mutual irradiation, bright and dark spots and so on. However, Infinity brings innovations in the modeling of accretion disks, and introduces the modeling of radial and non-radial oscillations on one or both components of the system.At this stage of development, Infinity can produce light curves, spectra and radial velocity curves; solving the inverse problem is still a work in progress. In terms of programming, Infinity is being developed in the object-oriented language C#, and great care is taken to produce readable, easily extensible and verifiable code. Infinity is fully optimized to take advantage of modern multi-core CPUs, and the code is thoroughly covered with unit-tests. We expect to make a public release during 2012.


2006 ◽  
Vol 2 (S240) ◽  
pp. 188-197
Author(s):  
R. E. Wilson

AbstractInnovative work on close binary models in 2003-06 improved upon synthesized line spectra, line profiles, and polarimetry; developed new ways of parameter estimation; and increased solution effectiveness and efficiency. Recent applications demonstrate the analytic power of binary system line spectrum models that pre-date the triennium. X-ray binary line profiles and radial velocity curves were refined by solution of the radiative transfer problem with specific inclusion of X-irradiation. Model polarization curves were generated by Monte Carlo experiments with multiple Thomson scattering in thin and thick binary system disks. In the parameter estimation area, independent developments by two groups now allow measurement of ephemerides, apsidal motion, and third body parameters from whole light and velocity curves, to supplement the traditional way of eclipse timings. Although the new route to those parameters is not well known within the ephemeris community, there are accuracy advantages and the number of applications is increasing. Numerical solution experiments on photometric mass ratios have checked two views of their intuitive basis, and show that mass ratios are well determined where star radii and limiting lobe radii are both well determined, which is for semi-detached or over-contact binaries with total-annular eclipses. Solution efficiency and automatic operation is needed for processing of light curves from large surveys, and will also be valuable for preliminary solutions of individually observed binaries. Neural networks have mainly been used for classification, and now a neural network program reliably finds preliminary solutions for W UMa binaries. Archived model light curves and Fourier fitting also are being pursued for classification and for preliminary solutions. Light curves in physical units such as erg·sec−1·cm−3 now allow direct distance estimation by combining the absolute accuracy of model stellar atmospheres with the astrophysical detail of a physical close binary model, by means of rigorous scaling between surface emission and observable flux. A Temperature-distance (T-d) theorem specifies conditions under which temperatures of both stars and distance can be found from light and velocity curves.


Sign in / Sign up

Export Citation Format

Share Document