scholarly journals Note on Some Faint Early Type Stars with Large Proper Motions

1922 ◽  
Vol 34 ◽  
pp. 54 ◽  
Author(s):  
W. J. Luyten
2001 ◽  
Vol 205 ◽  
pp. 20-27
Author(s):  
A. Eckart ◽  
R. Genzel ◽  
T. Ott

Measurements of the proper motions and radial velocities of stars in the central cluster of the Milky Way have revealed the presence of a 2-3 million solar mass black hole at the position of the compact radio source Sagittarius A* (SgrA*). The overall stellar motions do not deviate strongly from isotropy and are consistent with a spherical isothermal stellar cluster. Speckle spectroscopy with SHARP at the NTT and slit spectroscopy with ISAAC at the VLT suggests that several of them are early type stars. This is consistent with the idea that these stars are members of an early type cluster with small angular momentum and therefore are now in the immediate vicinity of SgrA*. Most recent data now allows to measure the curvatures of the stellar orbits for a few of the stars that are closest to the center and have the largest proper motions of up to 1400 km/s. The curvatures indicate that the stars indeed orbit the central compact object and will allow to further determine its mass and compactness.


2021 ◽  
Vol 646 ◽  
pp. L4
Author(s):  
Andreas Irrgang ◽  
Markus Dimpel ◽  
Ulrich Heber ◽  
Roberto Raddi

Since the discovery of hypervelocity stars in 2005, it has been widely believed that only the disruption of a binary system by a supermassive black hole at the Galactic center (GC), that is, the so-called Hills mechanism, is capable of accelerating stars to beyond the Galactic escape velocity. In the meantime, however, driven by the Gaia space mission, there is mounting evidence that many of the most extreme high-velocity early-type stars at high Galactic latitudes do originate in the Galactic disk and not in the GC. Moreover, the ejection velocities of these extreme disk-runaway stars exceed the predicted limits of the classical scenarios for the production of runaway stars. Based on proper motions from the Gaia early data release 3 and on recent and new spectrophotometric distances, we studied the kinematics of 30 such extreme disk-runaway stars, allowing us to deduce their spatial origins in and their ejection velocities from the Galactic disk with unprecedented precision. Only three stars in the sample have past trajectories that are consistent with an origin in the GC, most notably S5-HVS 1, which is the most extreme object in the sample by far. All other program stars are shown to be disk runaways with ejection velocities that sharply contrast at least with classical ejection scenarios. They include HVS 5 and HVS 6, which are both gravitationally unbound to the Milky Way. While most stars originate from within a galactocentric radius of 15 kpc, which corresponds to the observed extent of the spiral arms, a group of five stars stems from radii of about 21−29 kpc. This indicates a possible link to outer Galactic rings and a potential origin from infalling satellite galaxies.


1966 ◽  
Vol 24 ◽  
pp. 77-90 ◽  
Author(s):  
D. Chalonge

Several years ago a three-parameter system of stellar classification has been proposed (1, 2), for the early-type stars (O-G): it was an improvement on the two-parameter system described by Barbier and Chalonge (3).


1999 ◽  
Vol 518 (2) ◽  
pp. 890-900 ◽  
Author(s):  
Jessica M. Chapman ◽  
Claus Leitherer ◽  
Barbel Koribalski ◽  
Roderick Bouter ◽  
Michelle Storey

1980 ◽  
Vol 4 (1) ◽  
pp. 95-97 ◽  
Author(s):  
J. B. Whiteoak ◽  
F. F. Gardner

As part of a general investigation of interstellar clouds associated with southern HII regions we have begun a high-resolution study of the sodium D-line absorption in the directions of early-type stars that are likely to be associated with or located behind the clouds.


1998 ◽  
Vol 188 ◽  
pp. 224-225
Author(s):  
S. Tanaka ◽  
S. Kitamoto ◽  
T. Suzuki ◽  
K. Torii ◽  
M.F. Corcoran ◽  
...  

X-rays from early-type stars are emitted by the corona or the stellar wind. The materials in the surface layer of early-type stars are not contaminated by nuclear reactions in the stellar inside. Therefore, abundance study of the early-type stars provides us an information of the abundances of the original gas. However, the X-ray observations indicate low-metallicity, which is about 0.3 times of cosmic abundances. This fact raises the problem on the cosmic abundances.


1985 ◽  
Vol 111 ◽  
pp. 411-413
Author(s):  
Janet Rountree ◽  
George Sonneborn ◽  
Robert J. Panek

Previous studies of ultraviolet spectral classification have been insufficient to establish a comprehensive classification system for ultraviolet spectra of early-type stars because of inadequate spectral resolution. We have initiated a new study of ultraviolet spectral classification of B stars using high-dispersion IUE archival data. High-dispersion SWP spectra of MK standards and other B stars are retrieved from the IUE archives and numerically degraded to a uniform resolution of 0.25 or 0.50 Å. The spectra (in the form of plots or photowrites) are then visually examined with the aim of setting up a two-dimensional classification matrix. We follow the method used to create the MK classification system for visual spectra. The purpose of this work is to examine the applicability of the MK system (and in particular, the set of standard stars) in the ultraviolet, and to establish classification criteria in this spectral region.


1973 ◽  
Vol 54 ◽  
pp. 173-221
Author(s):  
J. C. Pecker

Regardless of the degree of elaboration of series of models, just how can they be used for calibration purposes? And how much is this calibration sensitive to the quality of the model theory? These two questions are the basis of our discussion, which covers : I – The general principles of the use of model atmospheres in stellar calibration (1 – The two dimensional classifications; 2 – The use of the total luminosity; 3 – The cases of Vega and Sirius; 4 – The calibration of ST – Teff relation); II – The failures of the two parameters model atmospheres (1 – The observational need for more-than-two-parameters classification; 2 – The abundance of elements, the line formation, and the model atmospheres; 3 – Various sources of unadequacy of models; 4 – Envelopes or shell features; their influence on model-building; 5 – The case of HD 45677. Diagnostic of early-type stars; 6 – Various unexplained spectral features); III – The present state of the model factory (1 – The classical models; 2 – New concepts in the description of a stellar atmosphere; 3 – New approaches in model making; 4 – Conclusions).


2005 ◽  
Vol 160 (2) ◽  
pp. 557-581 ◽  
Author(s):  
B. Stelzer ◽  
E. Flaccomio ◽  
T. Montmerle ◽  
G. Micela ◽  
S. Sciortino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document