Magnetic field structure of the star-forming region W3(OH) - VLBI spectral line results

1988 ◽  
Vol 326 ◽  
pp. 954 ◽  
Author(s):  
J. A. Garcia-Barreto ◽  
B. F. Burke ◽  
M. J. Reid ◽  
J. M. Moran ◽  
A. D. Haschick ◽  
...  
1984 ◽  
pp. 333-334
Author(s):  
J. A. Garcia-Barreto ◽  
B. F. Burke ◽  
M. J. Reid ◽  
J. M. Moran ◽  
A. D. Haschick

2008 ◽  
Vol 4 (S259) ◽  
pp. 97-98 ◽  
Author(s):  
Nobuhiko Kusakabe ◽  
Motohide Tamura ◽  
Ryo Kandori ◽  

AbstractMagnetic fields are believed to play an important role in star formation. We observed M42 and Mon R2 massive star forming regions using the wide-field (8′ × 8′) near-infrared imaging polarimeter SIRPOL in South Africa. Magnetic fields are mapped on the basis of dichroic polarized light from hundreds of young stars embedded in the regions. We found “hourglass shaped” magnetic field structure toward OMC-1 region, which is very consistent with magnetic fields traced by using dust emission polarimetry at sub-mm to FIR wavelengths. In the Mon R2 region, we found “S-shaped” magnetic field structure across the massive protostar IRS 1 and IRS 2. We will present the results of comparison of magnetic fields at NIR with those at other wavelengths.


2020 ◽  
Vol 896 (2) ◽  
pp. 163
Author(s):  
Philip C. Myers ◽  
Ian W. Stephens ◽  
Sayantan Auddy ◽  
Shantanu Basu ◽  
Tyler L. Bourke ◽  
...  

2018 ◽  
Vol 868 (1) ◽  
pp. 51 ◽  
Author(s):  
Philip C. Myers ◽  
Shantanu Basu ◽  
Sayantan Auddy

1987 ◽  
Vol 92 ◽  
pp. 82-83 ◽  
Author(s):  
C. T. Bolton ◽  
A. W. Fullerton ◽  
D. Bohlender ◽  
J. D. Landstreet ◽  
D. R. Gies

Over the past two years, we have obtained high resolution high signal/noise (S/N) spectra of the magnetic Be star σ Ori E at the Canada-France-Hawaii Telescope and McDonald Observatory. These spectra, which cover the spectral regions 399-417.5 and 440-458.5 nm and the Hα line and have typical S/N>200 and spectral resolution ≃0.02 nm, were obtained at a variety of rotational phases in order to study the magnetic field structure, the distribution of elements in the photosphere, and the effects of the magnetic field on the emission envelope. Our analysis of these spectra confirms, refines and extends the results obtained by Landstreet & Borra (1978), Groote & Hunger (1982 and references therein), and Nakajima (1985).The Hα emission is usually double-peaked, but it undergoes remarkable variations with the 1.19081 d rotational period of the star, which show that the emitting gas is localized into two regions which co-rotate with the star.


Sign in / Sign up

Export Citation Format

Share Document