Probing the Warm Intergalactic Medium through Absorption against Gamma-Ray Burst X-Ray Afterglows

2000 ◽  
Vol 544 (1) ◽  
pp. L7-L10 ◽  
Author(s):  
F. Fiore ◽  
F. Nicastro ◽  
S. Savaglio ◽  
L. Stella ◽  
M. Vietri
2020 ◽  
Vol 642 ◽  
pp. A24
Author(s):  
Sarah Walsh ◽  
Sheila McBreen ◽  
Antonio Martin-Carrillo ◽  
Thomas Dauser ◽  
Nastasha Wijers ◽  
...  

At low redshifts, the observed baryonic density falls far short of the total number of baryons predicted. Cosmological simulations suggest that these baryons reside in filamentary gas structures, known as the warm-hot intergalactic medium (WHIM). As a result of the high temperatures of these filaments, the matter is highly ionised such that it absorbs and emits far-UV and soft X-ray photons. Athena, the proposed European Space Agency X-ray observatory, aims to detect the “missing” baryons in the WHIM up to redshifts of z = 1 through absorption in active galactic nuclei and gamma-ray burst (GRB) afterglow spectra, allowing for the study of the evolution of these large-scale structures of the Universe. This work simulates WHIM filaments in the spectra of GRB X-ray afterglows with Athena using the SImulation of X-ray TElescopes framework. We investigate the feasibility of their detection with the X-IFU instrument, through O VII (E = 573 eV) and O VIII (E = 674 eV) absorption features, for a range of equivalent widths imprinted onto GRB afterglow spectra of observed starting fluxes ranging between 10−12 and 10−10 erg cm−2 s−1, in the 0.3−10 keV energy band. The analyses of X-IFU spectra by blind line search show that Athena will be able to detect O VII−O VIII absorption pairs with EWO VII > 0.13 eV and EWO VIII > 0.09 eV for afterglows with F > 2 × 10−11 erg cm−2 s−1. This allows for the detection of ≈ 45−137 O VII−O VIII absorbers during the four-year mission lifetime. The work shows that to obtain an O VII−O VIII detection of high statistical significance, the local hydrogen column density should be limited at NH < 8 × 1020 cm−2.


2006 ◽  
Vol 32 (5) ◽  
pp. 297-301 ◽  
Author(s):  
S. Yu. Sazonov ◽  
A. A. Lutovinov ◽  
E. M. Churazov ◽  
R. A. Sunyaev

1981 ◽  
Vol 30 (1-4) ◽  
pp. 467-470 ◽  
Author(s):  
G. Pizzichini ◽  
J. Danziger ◽  
P. Grosb� ◽  
M. Tarenghi ◽  
T. L. Cline ◽  
...  

2010 ◽  
Vol 518 ◽  
pp. A27 ◽  
Author(s):  
Z. Mao ◽  
Y. W. Yu ◽  
Z. G. Dai ◽  
C. M. Pi ◽  
X. P. Zheng

2021 ◽  
Vol 922 (2) ◽  
pp. 102
Author(s):  
Shu-Jin Hou ◽  
Shuang Du ◽  
Tong Liu ◽  
Hui-Jun Mu ◽  
Ren-Xin Xu

Abstract The central engine of gamma-ray bursts (GRBs) remains an open and cutting-edge topic in the era of multimessenger astrophysics. X-ray plateaus appear in some GRB afterglows, which are widely considered to originate from the spindown of magnetars. According to the stable magnetar scenario of GRBs, an X-ray plateau and a decay phase ∼t −2 should appear in X-ray afterglows. Meanwhile, the “normal” X-ray afterglow is produced by the external shock from a GRB fireball. We analyze the Neil Gehrels Swift GRB data, then find three gold samples that have an X-ray plateau and a decay phase ∼t −2 superimposed on the jet-driven normal component. Based on these features of the lightcurves, we argue that the magnetars should be the central engines of these three GRBs. Future joint multimessenger observations might further test this possibility, which can then be beneficial to constrain GRB physics.


1996 ◽  
Vol 466 ◽  
pp. 795 ◽  
Author(s):  
T. T. Hamilton ◽  
E. V. Gotthelf ◽  
D. J. Helfand

2008 ◽  
Vol 386 (2) ◽  
pp. 859-863 ◽  
Author(s):  
P. A. Curran ◽  
A. J. van der Horst ◽  
R. A. M. J. Wijers
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document