intergalactic medium
Recently Published Documents


TOTAL DOCUMENTS

711
(FIVE YEARS 80)

H-INDEX

82
(FIVE YEARS 8)

2021 ◽  
Vol 923 (2) ◽  
pp. 161
Author(s):  
Fahad Nasir ◽  
Christopher Cain ◽  
Anson D’Aloisio ◽  
Nakul Gangolli ◽  
Matthew McQuinn

Abstract Becker et al. measured the mean free path of Lyman-limit photons in the intergalactic medium (IGM) at z = 6. The short value suggests that absorptions may have played a prominent role in reionization. Here we study physical properties of ionizing photon sinks in the wake of ionization fronts (I-fronts) using radiative hydrodynamic simulations. We quantify the contributions of gaseous structures to the Lyman-limit opacity by tracking the column-density distributions in our simulations. Within Δt = 10 Myr of I-front passage, we find that self-shielding systems (N H I > 1017.2 cm−2) are comprised of two distinct populations: (1) overdensity Δ ∼ 50 structures in photoionization equilibrium with the ionizing background, and (2) Δ ≳ 100 density peaks with fully neutral cores. The self-shielding systems contribute more than half of the opacity at these times, but the IGM evolves considerably in Δt ∼ 100 Myr as structures are flattened by pressure smoothing and photoevaporation. By Δt = 300 Myr, they contribute ≲10% to the opacity in an average 1 Mpc3 patch of the universe. The percentage can be a factor of a few larger in overdense patches, where more self-shielding systems survive. We quantify the characteristic masses and sizes of self-shielding structures. Shortly after I-front passage, we find M = 104–108 M ⊙ and effective diameters d eff = 1–20 ckpc h −1. These scales increase as the gas relaxes. The picture herein presented may be different in dark matter models with suppressed small-scale power.


2021 ◽  
Vol 923 (2) ◽  
pp. 229
Author(s):  
Hinako Goto ◽  
Kazuhiro Shimasaku ◽  
Satoshi Yamanaka ◽  
Rieko Momose ◽  
Makoto Ando ◽  
...  

Abstract The Lyα luminosity function (LF) of Lyα emitters (LAEs) has been used to constrain the neutral hydrogen fraction in the intergalactic medium (IGM) and thus the timeline of cosmic reionization. Here we present the results of a new narrowband imaging survey for z = 7.3 LAEs in a large area of ∼3 deg2 with Subaru/Hyper Suprime-Cam. No LAEs are detected down to L Lyα ≃ 1043.2 erg s−1 in an effective cosmic volume of ∼2 × 106 Mpc3, placing an upper limit on the bright part of the z = 7.3 Lyα LF for the first time and confirming a decrease in bright LAEs from z = 7.0. By comparing this upper limit with the Lyα LF in the case of fully ionized IGM, which is predicted using an observed z = 5.7 Lyα LF on the assumption that the intrinsic Lyα LF evolves in the same way as the UV LF, we obtain the relative IGM transmission T Ly α IGM ( 7.3 ) / T Ly α IGM ( 5.7 ) < 0.77 and then the volume-averaged neutral fraction x H I(7.3) > 0.28. Cosmic reionization is thus still ongoing at z = 7.3, consistent with results from other x H I estimation methods. A similar analysis using literature Lyα LFs finds that at z = 6.6 and 7.0, the observed Lyα LF agrees with the predicted one, consistent with full ionization.


2021 ◽  
Vol 922 (2) ◽  
pp. 263
Author(s):  
Hyunbae Park ◽  
Intae Jung ◽  
Hyunmi Song ◽  
Pierre Ocvirk ◽  
Paul R. Shapiro ◽  
...  

Abstract Using the CoDa II simulation, we study the Lyα transmissivity of the intergalactic medium (IGM) during reionization. At z > 6, a typical galaxy without an active galactic nucleus fails to form a proximity zone around itself due to the overdensity of the surrounding IGM. The gravitational infall motion in the IGM makes the resonance absorption extend to the red side of Lyα, suppressing the transmission up to roughly the circular velocity of the galaxy. In some sight lines, an optically thin blob generated by a supernova in a neighboring galaxy results in a peak feature, which can be mistaken for a blue peak. Redward of the resonance absorption, the damping-wing opacity correlates with the global IGM neutral fraction and the UV magnitude of the source galaxy. Brighter galaxies tend to suffer lower opacity because they tend to reside in larger H ii regions, and the surrounding IGM transmits redder photons, which are less susceptible to attenuation, owing to stronger infall velocity. The H ii regions are highly nonspherical, causing both sight-line-to-sight-line and galaxy-to-galaxy variation in opacity. Also, self-shielded systems within H ii regions strongly attenuate the emission for certain sight lines. All these factors add to the transmissivity variation, requiring a large sample size to constrain the average transmission. The variation is largest for fainter galaxies at higher redshift. The 68% range of the transmissivity is similar to or greater than the median for galaxies with M UV ≥ −21 at z ≥ 7, implying that more than a hundred galaxies would be needed to measure the transmission to 10% accuracy.


2021 ◽  
Vol 923 (1) ◽  
pp. 87
Author(s):  
Holly M. Christenson ◽  
George D. Becker ◽  
Steven R. Furlanetto ◽  
Frederick B. Davies ◽  
Matthew A. Malkan ◽  
...  

Abstract The observed large-scale scatter in Lyα opacity of the intergalactic medium at z < 6 implies large fluctuations in the neutral hydrogen fraction that are unexpected long after reionization has ended. A number of models have emerged to explain these fluctuations that make testable predictions for the relationship between Lyα opacity and density. We present selections of z = 5.7 Lyα-emitting galaxies (LAEs) in the fields surrounding two highly opaque quasar sightlines with long Lyα troughs. The fields lie toward the z = 6.0 quasar ULAS J0148+0600, for which we reanalyze previously published results using improved photometric selection, and toward the z = 6.15 quasar SDSS J1250+3130, for which results are presented here for the first time. In both fields, we report a deficit of LAEs within 20 h −1 Mpc of the quasar. The association of highly opaque sightlines with galaxy underdensities in these two fields is consistent with models in which the scatter in Lyα opacity is driven by large-scale fluctuations in the ionizing UV background or by an ultra-late reionization that has not yet concluded at z = 5.7.


2021 ◽  
Vol 923 (1) ◽  
pp. 115
Author(s):  
Nir Mandelker ◽  
Frank C. van den Bosch ◽  
Volker Springel ◽  
Freeke van de Voort ◽  
Joseph N. Burchett ◽  
...  

Abstract Using a novel suite of cosmological simulations zooming in on a megaparsec-scale intergalactic sheet (pancake) at z ∼ (3–5), we conduct an in-depth study of the thermal properties and H i content of the warm-hot intergalactic medium (WHIM) at those redshifts. The simulations span nearly three orders of magnitude in gas cell mass, ∼(7.7 × 106–1.5 × 104)M ⊙, one of the highest-resolution simulations of such a large patch of the intergalactic medium (IGM) to date. At z ∼ 5, a strong accretion shock develops around the pancake. Gas in the postshock region proceeds to cool rapidly, triggering thermal instabilities and generating a multiphase medium. We find the mass, morphology, and distribution of H i in the WHIM to all be unconverged, even at our highest resolution. Interestingly, the lack of convergence is more severe for the less-dense, metal-poor intrapancake medium (IPM) in between filaments and far outside galaxies. With increased resolution, the IPM develops a shattered structure with most of the H i in kiloparsec-scale clouds. From our lowest-to-highest resolution, the covering fraction of metal-poor (Z < 10−3 Z ⊙) Lyman-limit systems (N H I > 1017.2cm−2) in the z ∼ 4 IPM increases from ∼(3–15)%, while that of metal-poor damped Lyα absorbers (N H I > 1020cm−2) increases from ∼(0.2–0.6)%, with no sign of convergence. We find that a necessary condition for the formation of a multiphase shattered structure is resolving the cooling length, l cool = c s t cool, at T ∼ 105 K. If this is unresolved, gas “piles up” at T ≲ 105 K and further cooling becomes very inefficient. We conclude that state-of-the-art cosmological simulations are still unable to resolve the multiphase structure of the WHIM, with potentially far-reaching implications.


2021 ◽  
Vol 923 (2) ◽  
pp. 223
Author(s):  
Yongda Zhu ◽  
George D. Becker ◽  
Sarah E. I. Bosman ◽  
Laura C. Keating ◽  
Holly M. Christenson ◽  
...  

Abstract We present a new investigation of the intergalactic medium (IGM) near the end of reionization using “dark gaps” in the Lyα forest. Using spectra of 55 QSOs at z em > 5.5, including new data from the XQR-30 VLT Large Programme, we identify gaps in the Lyα forest where the transmission averaged over 1 comoving h −1 Mpc bins falls below 5%. Nine ultralong (L > 80 h −1 Mpc) dark gaps are identified at z < 6. In addition, we quantify the fraction of QSO spectra exhibiting gaps longer than 30 h −1 Mpc, F 30, as a function of redshift. We measure F 30 ≃ 0.9, 0.6, and 0.15 at z = 6.0, 5.8, and 5.6, respectively, with the last of these long dark gaps persisting down to z ≃5.3. Comparing our results with predictions from hydrodynamical simulations, we find that the data are consistent with models wherein reionization extends significantly below redshift six. Models wherein the IGM is essentially fully reionized that retain large-scale fluctuations in the ionizing UV background at z ≲6 are also potentially consistent with the data. Overall, our results suggest that signatures of reionization in the form of islands of neutral hydrogen and/or large-scale fluctuations in the ionizing background remain present in the IGM until at least z ≃ 5.3.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012028
Author(s):  
K N Telikova ◽  
P S Shternin ◽  
S A Balashev

Abstract We investigate evolution of physical parameters of the intergalactic medium using an analysis of Lya forest lines detected towards distant quasars. We used the enlarged sample of 98 quasars obtained with Keck/HIRES and VLT/UVES. We show that taking into account a finite spatial size of absorbers, regulated by pressure smoothing, significantly affects the inferred thermal parameters of the intergalactic gas, such as the hydrogen photoionization rate and parameters of the temperature-density relation. Using Bayesian framework we constrained for the first time the scale parameter between the Jeans length and characteristic size of the absorbers. We also discuss limitations of the method based on the analysis of the minimal broadending of Lya lines, which stem from the patchy nature of He II reionization.


2021 ◽  
Vol 508 (2) ◽  
pp. 1701-1718
Author(s):  
Tony Dalton ◽  
Simon L Morris ◽  
Michele Fumagalli ◽  
Efrain Gatuzz

ABSTRACT We use Swift blazar spectra to estimate the key intergalactic medium (IGM) properties of hydrogen column density ($\mathit {N}\small {\rm HXIGM}$), metallicity, and temperature over a redshift range of 0.03 ≤ z ≤ 4.7, using a collisional ionization equilibrium model for the ionized plasma. We adopted a conservative approach to the blazar continuum model given its intrinsic variability and use a range of power-law models. We subjected our results to a number of tests and found that the $\mathit {N}\small {\rm HXIGM}$ parameter was robust with respect to individual exposure data and co-added spectra for each source, and between Swift and XMM–Newton source data. We also found no relation between $\mathit {N}\small {\rm HXIGM}$ and variations in source flux or intrinsic power laws. Though some objects may have a bulk Comptonization component that could mimic absorption, it did not alter our overall results. The $\mathit {N}\small {\rm HXIGM}$ from the combined blazar sample scales as (1 + z)1.8 ± 0.2. The mean hydrogen density at z = 0 is n0 = (3.2 ± 0.5) × 10−7 cm−3. The mean IGM temperature over the full redshift range is log(T/K) =6.1 ± 0.1, and the mean metallicity is [X/H] = −1.62 ± 0.04(Z ∼ 0.02). When combining with the results with a gamma-ray burst (GRB) sample, we find the results are consistent over an extended redshift range of 0.03 ≤ z ≤ 6.3. Using our model for blazars and GRBs, we conclude that the IGM contributes substantially to the total absorption seen in both blazar and GRB spectra.


Author(s):  
Janakee Raste ◽  
Girish Kulkarni ◽  
Laura C Keating ◽  
Martin G Haehnelt ◽  
Jonathan Chardin ◽  
...  

Abstract Our understanding of the intergalactic medium at redshifts z = 5–6 has improved considerably in the last few years due to the discovery of quasars with z &gt; 6 that enable Lyman-α forest studies at these redshifts. A realisation from this has been that hydrogen reionization could end much later than previously thought, so that large “islands” of cold, neutral hydrogen could exist in the IGM at redshifts z = 5–6. By using radiative transfer simulations of the IGM, we consider the implications of the presence of these neutral hydrogen islands for the 21-cm power spectrum signal and its potential detection by experiments such as hera, ska, lofar, and mwa. In contrast with previous models of the 21-cm signal, we find that thanks to the late end of reionization the 21-cm power in our simulation continues to be as high as $\Delta ^2_{21}=10~\mathrm{mK}^2$ at k ∼ 0.1 h cMpc−1 at z = 5–6. This value of the power spectrum is several orders of magnitude higher than that in conventional models considered in the literature for these redshifts. Such high values of the 21-cm power spectrum should be detectable by hera and ska1-low in ∼1000 hours, assuming optimistic foreground subtraction. This redshift range is also attractive due to relatively low sky temperature and potentially greater abundance of multiwavelength data.


Sign in / Sign up

Export Citation Format

Share Document