baryonic density
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 502 (2) ◽  
pp. 2474-2481
Author(s):  
Cyril Pitrou ◽  
Alain Coc ◽  
Jean-Philippe Uzan ◽  
Elisabeth Vangioni

ABSTRACT Recent measurements of the D(p,γ)3He nuclear reaction cross-section and of the neutron lifetime, along with the reevaluation of the cosmological baryon abundance from cosmic microwave background (CMB) analysis, call for an update of abundance predictions for light elements produced during the big-bang nucleosynthesis (BBN). While considered as a pillar of the hot big-bang model in its early days, BBN constraining power mostly rests on deuterium abundance. We point out a new ≃1.8σ tension on the baryonic density, or equivalently on the D/H abundance, between the value inferred on one hand from the analysis of the primordial abundances of light elements and, on the other hand, from the combination of CMB and baryonic oscillation data. This draws the attention on this sector of the theory and gives us the opportunity to reevaluate the status of BBN in the context of precision cosmology. Finally, this paper presents an upgrade of the BBN code primat.


2020 ◽  
Vol 642 ◽  
pp. A24
Author(s):  
Sarah Walsh ◽  
Sheila McBreen ◽  
Antonio Martin-Carrillo ◽  
Thomas Dauser ◽  
Nastasha Wijers ◽  
...  

At low redshifts, the observed baryonic density falls far short of the total number of baryons predicted. Cosmological simulations suggest that these baryons reside in filamentary gas structures, known as the warm-hot intergalactic medium (WHIM). As a result of the high temperatures of these filaments, the matter is highly ionised such that it absorbs and emits far-UV and soft X-ray photons. Athena, the proposed European Space Agency X-ray observatory, aims to detect the “missing” baryons in the WHIM up to redshifts of z = 1 through absorption in active galactic nuclei and gamma-ray burst (GRB) afterglow spectra, allowing for the study of the evolution of these large-scale structures of the Universe. This work simulates WHIM filaments in the spectra of GRB X-ray afterglows with Athena using the SImulation of X-ray TElescopes framework. We investigate the feasibility of their detection with the X-IFU instrument, through O VII (E = 573 eV) and O VIII (E = 674 eV) absorption features, for a range of equivalent widths imprinted onto GRB afterglow spectra of observed starting fluxes ranging between 10−12 and 10−10 erg cm−2 s−1, in the 0.3−10 keV energy band. The analyses of X-IFU spectra by blind line search show that Athena will be able to detect O VII−O VIII absorption pairs with EWO VII > 0.13 eV and EWO VIII > 0.09 eV for afterglows with F > 2 × 10−11 erg cm−2 s−1. This allows for the detection of ≈ 45−137 O VII−O VIII absorbers during the four-year mission lifetime. The work shows that to obtain an O VII−O VIII detection of high statistical significance, the local hydrogen column density should be limited at NH < 8 × 1020 cm−2.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Abdel Nasser Tawfik ◽  
Muhammad Maher ◽  
A. H. El-Kateb ◽  
Sara Abdelaziz

In different approaches, the temperature-baryon density plane of QCD matter is studied for deconfinement and chemical freezeout boundaries. Results from various heavy-ion experiments are compared with the recent lattice simulations, the effective QCD-like Polyakov linear-sigma model, and the equilibrium thermal models. Along the entire freezeout boundary, there is an excellent agreement between the thermal model calculations and the experiments. Also, the thermal model calculations agree well with the estimations deduced from the Polyakov linear-sigma model (PLSM). At low baryonic density or high energies, both deconfinement and chemical freezeout boundaries are likely coincident, and therefore, the agreement with the lattice simulations becomes excellent as well, while at large baryonic density, the two boundaries become distinguishable forming a phase where hadrons and quark-gluon plasma likely coexist.


2019 ◽  
Vol 100 (10) ◽  
Author(s):  
O. Ivanytskyi ◽  
M. Ángeles Pérez-García ◽  
V. Sagun ◽  
C. Albertus

2018 ◽  
Vol 168 ◽  
pp. 06006
Author(s):  
Sichun Sun ◽  
Yun-Long Zhang

We discuss a scenario that apparent dark matter comes from the induced gravity in the (3+1)- dimensional spacetime, which can be embedded into one higher dimensional flat spacetime. The stress tensor of dark energy and dark matter is identified with the Brown-York stress tensor on the hypersurface, and we find an interesting constraint relation between the dark matter and dark energy density parameter and baryonic density parameter. Our approach may show a new understanding for Verlinde’s emergent gravity from higher dimensions. We also comment on some phenomenological implications, including gravitational wave solutions and MOND limit.


2018 ◽  
Vol 171 ◽  
pp. 12001 ◽  
Author(s):  
Vladimir Kekelidze ◽  
Vadim Kolesnikov ◽  
Alexander Sorin

The project NICA (Nuclotron-based Ion Collider fAcility) aims to study hot and baryon rich QCD matter in heavy ion collisions in the energy range [see formula in PDF] = 4 − 11 GeV. The rich heavy-ion physics program will be performed at two experiments, BM@N (Baryonic Matter at Nuclotron) at beams extracted from the Nuclotron, and at MPD (Multi-Purpose Detector) at the NICA collider. This program covers a variety of phenomena in strongly interacting matter of the highest baryonic density, which includes study of collective effects, production of hyperon and hypernuclei, in-medium modification of meson properties, and event-by-event fluctuations.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Divakar Pathak ◽  
Amruta Mishra

The in-medium properties ofDSmesons are investigated within the framework of an effective hadronic model, which is a generalization of a chiralSU(3)model, toSU(4), in order to study the interactions of the charmed hadrons. In the present work, theDSmesons are observed to experience net attractive interactions in a dense hadronic medium, hence reducing the masses of theDS+andDS-mesons from the vacuum values. While this conclusion holds in both nuclear and hyperonic media, the magnitude of the mass drop is observed to intensify with the inclusion of strangeness in the medium. Additionally, in hyperonic medium, the mass degeneracy of theDSmesons is observed to be broken, due to opposite signs of the Weinberg-Tomozawa interaction term in the Lagrangian density. Along with the magnitude of the mass drops, the mass splitting betweenDS+andDS-mesons is also observed to grow with an increase in baryonic density and strangeness content of the medium. However, all medium effects analyzed are found to be weakly dependent on isospin asymmetry and temperature. We discuss the possible implications emanating from this analysis, which are all expected to make a significant difference to observables in heavy ion collision experiments, especially the upcoming Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR), GSI, where matter at high baryonic densities is planned to be produced.


2014 ◽  
Vol 23 (11) ◽  
pp. 1450073 ◽  
Author(s):  
Divakar Pathak ◽  
Amruta Mishra

The in-medium behavior of bottom-strange pseudoscalar mesons in hot, isospin asymmetric and dense hadronic environment is studied using a chiral effective model. The same was recently generalized to the heavy quark sector and employed to study the behavior of open-charm and open-bottom mesons. The heavy quark (anti-quark) is treated as frozen and all medium modifications of these bottom-strange mesons are due to their strange anti-quark (quark) content. We observe a pronounced dependence of their medium mass on baryonic density and strangeness content of the medium. Certain aspects of these in-medium interactions are similar to those observed for the strange-charmed mesons in a preceding investigation, such as the lifting of mass-degeneracy of [Formula: see text] and [Formula: see text] mesons in hyperonic matter, while the same is respected in vacuum as well as in nuclear matter. In general, however, there is a remarkable distinction between the two species, even though the formalism predicts a completely analogous in-medium interaction Lagrangian density. We discuss in detail the reason for different in-medium behavior of these bottom-strange mesons as compared to charmed-strange mesons, despite the dynamics of the heavy quark being treated as frozen in both cases.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
M. F. Carneiro ◽  
P. C. de Holanda

Mass Varying Neutrinos (MaVaN’s) mechanisms were proposed to link the neutrino mass scale with the dark energy density, addressing the coincidence problem. In some scenarios, this mass can present a dependence on the baryonic density felt by neutrinos, creating an effective neutrino mass that depends both on the neutrino and baryonic densities. In this work, we study the phenomenological consequence of MaVaN’s scenarios in which the matter density dependence is induced by Yukawa interactions of a light neutral scalar particle which couples to neutrinos and matter. Under the assumption of one mass scale dominance, we perform an analysis of KamLAND neutrino data which depends on 4 parameters: the two standard oscillation parameters,Δm0,212andtan2θ12, and two new coefficients which parameterize the environment dependence of neutrino mass. We introduce an Earth’s crust model to compute precisely the density in each point along the neutrino trajectory. We show that this new description of density does not affect the analysis with the standard model case. With the MaVaN model, we observe a first order effect in lower density, which leads to an improvement on the data description.


2010 ◽  
Vol 19 (08n10) ◽  
pp. 1569-1574 ◽  
Author(s):  
L. FERRARI ◽  
P. C. R. ROSSI ◽  
M. MALHEIRO

We analyze here whether polytropic equations of state can be a good approximation for neutron stars. Dividing the matter in the star interior in different regions that can be well-reproduced by different polytropics and imposing the continuity of the pressure among the regions, we obtain the corresponding neutron star mass–radius diagram. A comparison with the results obtained with the polytropic approximation and the exact relativistic mean-field equation of state (EoS) is shown for two compositions of the hadronic matter. We conclude that with more than one polytropic EoS, it is possible to obtain a good fit to neutron stars only if the pressure is written as a power-law in the energy density (or mass density) and not in the baryonic density (the usual polytropic). We also found a correlation between the sound velocity at the star center and its mass. The sound velocity at the interface between the polytropic regions shows a small discontinuity that is greater for the hadronic matter including hyperons.


Sign in / Sign up

Export Citation Format

Share Document