Evidence for Auxin Production in Isolated Roots Growing In vitro

1939 ◽  
Vol 101 (2) ◽  
pp. 450-456 ◽  
Author(s):  
J. van Overbeek
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tongda Li ◽  
Ross Mann ◽  
Jatinder Kaur ◽  
German Spangenberg ◽  
Timothy Sawbridge

AbstractPaenibacillus species are Gram-positive bacteria that have been isolated from a diverse array of plant species and soils, with some species exhibiting plant growth-promoting (PGP) activities. Here we report two strains (S02 and S25) of a novel Paenibacillus sp. that were isolated from perennial ryegrass (Lolium perenne) seeds. Comparative genomics analyses showed this novel species was closely related to P. polymyxa. Genomic analyses revealed that strains S02 and S25 possess PGP genes associated with biological nitrogen fixation, phosphate solubilisation and assimilation, as well as auxin production and transportation. Moreover, secondary metabolite gene cluster analyses identified 13 clusters that are shared by both strains and three clusters unique to S25. In vitro assays demonstrated strong bioprotection activity against phytopathogens (Colletotrichum graminicola and Fusarium verticillioides), particularly for strain S02. A transcriptomics analysis evaluating nitrogen fixation activity showed both strains carry an expressed nif operon, but strain S02 was more active than strain S25 in nitrogen-free media. Another transcriptomics analysis evaluating the interaction of strains with F. verticillioides showed strain S02 had increased expression of core genes of secondary metabolite clusters (fusaricidin, paenilan, tridecaptin and polymyxin) when F. verticillioides was present and absent, compared to S25. Such bioactivities make strain S02 a promising candidate to be developed as a combined biofertiliser/bioprotectant.


2007 ◽  
Vol 59 (4) ◽  
pp. 319-326 ◽  
Author(s):  
Biljana Kukavica ◽  
Aleksandra Mitrovic ◽  
M. Mojovic ◽  
Sonja Veljovic-Jovanovic

Changes in growth, peroxidase profiles, and hydroxyl radical formation were examined in IAA (0.5-10 mg/l) treated pea plants grown hydroponically and in isolated roots in liquid in vitro culture. IAA inhibited root elongation, both in hydroponically grown pea plants and in isolated roots in vitro. A remarkable increase in the number of POD iso?forms was noticed in isolated roots grown in vitro, compared to the roots from plants grown hydroponically. IAA induced both disappearance of several root POD isoforms and hydroxyl radical formation in the root and the root cell wall.


1938 ◽  
Vol 24 (7) ◽  
pp. 260-264 ◽  
Author(s):  
J. van Overbeek ◽  
J. Bonner
Keyword(s):  

2020 ◽  
Vol 2 (1) ◽  
pp. 31-39
Author(s):  
Toga Pangihotan Napitupulu

Banana rhizosphere harbors a unique diversity of microbes including fungi that play critical roles in the growth of the plant host as well as might be important for biologically controlling the fungal soil-borne pathogens particularly Fusarium oxysporum f.sp. cubense (Foc), the causing agent of devastating Panama wilt. Among other fungi, we have succeeded to isolate a Trichoderma species from rhizosphere of healthy banana. Molecular identification revealed the isolate as Trichoderma virens InaCC F1030 (being collection of Indonesian Culture Collection or InaCC). Therefore, the aim of this study was to investigate the biological control of our isolate against Foc as well as plant growth promoting ability through its ability to produce auxin (indole-3-acetic acid/IAA). Two approaches were employed to evaluate the antagonism of our isolate against Foc, through direct confrontation test and volatile organic compounds (VOCs) producing. We found that our isolate was considered as antagonistic to the Foc, but not highly antagonistic according to direct confrontation assay. It was also revealed that our isolate produces the VOCs that inhibited around 50% of the mycelial growth of the test pathogen after six to seven days of exposure. Our isolate was able to produce the IAA in axenic submerged fermentation condition particularly in the presence of the precursor L-tryptophan. IAA production ability as well as the mycelial biomass of fungus were increased approximately 17% and 120% respectively as the effect of supplementation of 0.1% of L-tryptophan. These in vitro bioassays lead us to conclude that somehow our isolate T. virens InaCC F1030 has potency to be utilized as biocontrol and biofertilizer agent.


1985 ◽  
Vol 24 (7) ◽  
pp. 1429-1431 ◽  
Author(s):  
James K. Porter ◽  
Charles W. Bacon ◽  
Horace G. Cutler ◽  
Richard F. Arrendale ◽  
Joe D. Robbins
Keyword(s):  

2020 ◽  
Vol 4 ◽  
Author(s):  
Neilton Antonio Fiusa Araújo ◽  
Rafaela Magalhães Brandão ◽  
Beatriz Meireles Barguil ◽  
Maria das Graças Cardoso ◽  
Moacir Pasqual ◽  
...  

Rose essential oil is rich in compounds widely used by the pharmaceutical and cosmetic industry, due to the biological activities it presents. However, obtaining oil is costly, as the yield per plant is low, which requires several techniques that aim to increase its production. The application of growth-promoting bacteria has been studied for this purpose. Thus, the objective of this work was to select efficient bacteria for production and evaluate their influence on the phytotechnical characteristics and composition of the essential oils of roses. Seven species of bacteria were evaluated for the potential to promote growth in vitro, being tested for nitrogen fixation, phosphate solubilization, protease production and auxin production. From bacteria tested, four were selected and inoculated on rose plants of cultivar Black Prince to evaluate the influence on phytotechnical variables of flower and stem and the oil production. The evaluation of the production of roses was performed through the characteristics of the flowers (size, weight, and diameter of the stem) and floral bud. The essential oils from the inoculated flowers were extracted and evaluated in terms of content, yield, and chemical composition. The application of B. acidiceler, B. subtilis and B. pumilus resulted in flowers with a diameter up to 29% larger. The floral stem was increased by up to 24.5% when B. acidiceler and B. pumilus were used. Meanwhile, the stem diameter was around 41% greater in the presence of B. acidiceler, B. subtilis and in the control. Bacillus pumilus also increased the weight of fresh petals (104%) and essential oil yield (26%), changing the chemical composition of the extracted essential oil. Thus, it is concluded that B. acidiceler, B. pumilus, and B. subtilis improved the phytotechnical characteristics of roses. Among bacteria, B. pumilus increased the essential oil content as well as positively changed the chemical composition of the extracted essential oil.


2021 ◽  
Author(s):  
Tongda Li ◽  
Ross Mann ◽  
Jatinder Kaur ◽  
German Spangenberg ◽  
Timothy Sawbridge

Abstract Paenibacillus species are Gram-positive bacteria that have been isolated from a diverse array of plant species and soils, with some species exhibiting plant growth-promoting (PGP) activities. Here we report a novel Paenibacillus sp. (strains S02 and S25) that was isolated from perennial ryegrass (Lolium perenne) seeds. Comparative genomics analyses showed this novel species was closely related to P. polymyxa. Genomic analyses revealed that strains S02 and S25 possess PGP genes associated with biological nitrogen fixation, phosphate solubilisation and assimilation, as well as auxin production and transportation. Moreover, secondary metabolite gene cluster analyses identified 13 clusters that are shared by both strains and three clusters unique to S25. In vitro assays demonstrated strong bioprotection activity against phytopathogens (Colletotrichum graminicola and Fusarium verticillioides), particularly for strain S02. A transcriptomics analysis evaluating nitrogen fixation activity showed both strains carry an expressed nif operon, but strain S02 was more active than strain S25 in nitrogen-free media. Another transcriptomics analysis evaluating the interaction of strains with F. verticillioides showed strain S02 had increased expression of core genes of secondary metabolite clusters (fusaricidin, paenilan, tridecaptin and polymyxin) when F. verticillioides was present and absent, compared to S25. Such bioactivities make strain S02 a promising candidate to be developed as a combined biofertiliser/bioprotectant.


Sign in / Sign up

Export Citation Format

Share Document