Numerical Simulations of Three‐dimensional Coronal Magnetic Fields Resulting from the Emergence of Twisted Magnetic Flux Tubes

2004 ◽  
Vol 609 (2) ◽  
pp. 1123-1133 ◽  
Author(s):  
Y. Fan ◽  
S. E. Gibson
2003 ◽  
Vol 595 (2) ◽  
pp. 1259-1276 ◽  
Author(s):  
M. G. Linton ◽  
E. R. Priest

1993 ◽  
Vol 141 ◽  
pp. 143-146
Author(s):  
K. Petrovay ◽  
G. Szakály

AbstractThe presently widely accepted view that the solar dynamo operates near the base of the convective zone makes it difficult to relate the magnetic fields observed in the solar atmosphere to the fields in the dynamo layer. The large amount of observational data concerning photospheric magnetic fields could in principle be used to impose constraints on dynamo theory, but in order to infer these constraints the above mentioned “missing link” between the dynamo and surface fields should be found. This paper proposes such a link by modeling the passive vertical transport of thin magnetic flux tubes through the convective zone.


Solar Physics ◽  
2017 ◽  
Vol 292 (2) ◽  
Author(s):  
D. Wójcik ◽  
K. Murawski ◽  
Z. E. Musielak ◽  
P. Konkol ◽  
A. Mignone

2004 ◽  
Vol 219 ◽  
pp. 437-448
Author(s):  
Zdzislaw E. Musielak

To explain the heating of stellar chromospheres and transition regions, two classes of heating mechanisms have been considered: dissipation of acoustic and magnetic waves generated in stellar convection zones; and dissipation of currents generated by photospheric motions of surface magnetic fields. The focus of this paper is on the wave heating mechanisms and on recent results which demonstrate that theoretical models of stellar chromospheres based on the wave heating can explain the “basal flux” and the observed Ca II emission in most stars but cannot account for the observed Mg II emission in active stars. The obtained results clearly show that the base of stellar chromospheres is heated by acoustic waves, the heating of the middle and upper chromospheric layers is dominated by magnetic waves associated with magnetic flux tubes, and that other non-wave heating mechanisms are required to explain the structure of the highest layers of stellar chromospheres and transition regions.


2013 ◽  
Vol 9 (S302) ◽  
pp. 126-129
Author(s):  
Khalil Daiffallah

AbstractMotivated by the problem of local solar subsurface magnetic structure, we have used numerical simulations to investigate the propagation of waves through monolithic magnetic flux tubes of different sizes. A cluster model can be a good approximation to simulate sunspots as well as solar plage regions which are composed of an ensemble of compactly packed thin flux tubes. Simulations of this type are powerful tools to probe the structure and the dynamics of various solar features which are directly related to solar magnetic field activity.


Sign in / Sign up

Export Citation Format

Share Document