convective envelope
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 35)

H-INDEX

23
(FIVE YEARS 4)

Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 45
Author(s):  
Paolo Ventura ◽  
Flavia Dell’Agli ◽  
Marco Tailo ◽  
Marco Castellani ◽  
Ester Marini ◽  
...  

We discuss the evolution of stars through the asymptotic giant branch, focusing on the physical mechanisms potentially able to alter the surface chemical composition and on how changes in the chemistry of the external regions affect the physical properties of the star and the duration of this evolutionary phase. We focus on the differences between the evolution of low-mass stars, driven by the growth of the core mass and by the surface carbon enrichment, and that of their higher mass counterparts, which experience hot bottom burning. In the latter sources, the variation of the surface chemical composition reflects the equilibria of the proton capture nucleosynthesis experienced at the base of the convective envelope. The pollution expected from this class of stars is discussed, outlining the role of mass and metallicity on the chemical composition of the ejecta. To this aim, we considered evolutionary models of 0.7–8 M⊙ stars in a wide range of metallicities, extending from the ultra-metal-poor domain to super-solar chemistries.


Author(s):  
Xu-Dong Zhang ◽  
Shengbang Qian ◽  
Ergang Zhao ◽  
Qijun Zhi ◽  
Aijun Dong ◽  
...  

Abstract Multi-color light curves of CSS J075415.6+191052 and NW Leo are presented and the photometric solutions suggest that CSS J075415.6+191052 is a low mass ratio (q=0.178) and slightly deep contact binary (f=34.9%), while NW Leo with high mass ratio (q=0.707) and shallow degree of contact (f=2.3%). For CSS J075415.6+191052, the RI light curves show weakening around the left shoulder of secondary minimum, which indicates that there may be a dark spot on the secondary component. However, the light curves of BV bands are totally symmetric. It is unreasonable if the dark spot is caused by magnetic activity or mass transfers between two components. Therefore, the weakening of the light curves in this contact binary is caused by something else. A possible explanation is mass transferring from primary component to common convective envelope through the inner Lagrangian point, and this part of the mass, for some reason, weakens RI bands of light from secondary component. O - C analysis of NW Leo reveals a cyclic period change with a modulation period of 4.7 years, which may be caused by the light travel time effect of a third body. The positions of CSS J075415.6+191052 and NW Leo in P - J_{orb}' diagram suggest that the former is more evolved, which is in agreement with their photometric solutions. In the current stage, CSS J075415.6+191052 is dominated by the angular momentum loss theory, but NW Leo mainly follow the thermal relaxation oscillation theory.


2021 ◽  
Vol 893 (1) ◽  
pp. 012070
Author(s):  
D S Permana ◽  
Supari

Abstract The Madden-Julian Oscillation (MJO) is the dominant mode of intraseasonal variability of rainfall in Indonesia, but its signal is often obscured in individual station data, where effects are most directly felt at the local level. This study aims to investigate the general impacts of MJO on rainfall at different seasons in Indonesia, particularly during boreal summer. Impacts of the MJO on daily rainfall anomaly during the four climatic seasons: DJF, MAM, JJA, and SON in Indonesia have been evaluated using in-situ data from 86 stations during 1981 - 2012 and remote sensing data using GPM IMERGV06 from 2001 - 2019. The greatest impact of the MJO on rainfall over Indonesia occurs during the DJF and MAM seasons (austral summer), with the magnitude varying across regions. Enhanced rainfall generally occurs over the western parts of Indonesia on phases 2 to 4, central parts of Indonesia on phase 4, and eastern parts of Indonesia on phases 4 to 5. Conversely, suppressed rainfall generally occurs over the western parts of Indonesia on phases 5 to 8, central parts of Indonesia on phases 6 to 8, and eastern parts of Indonesia on phases 1 to 2 and 6 to 8. In addition, the MJO influence during the JJA and SON seasons are slightly less, in terms of intensity, than during the DJF and MAM seasons, which is likely due to the northward shift of ITCZ and, hence, the intraseasonal oscillation convective envelope during boreal summer. Generally, enhanced rainfall occurs over the western and northern parts of Indonesia on phases 2 to 3, and suppressed rainfall on phases 6 to 7. The results indicate that convectively active MJO may increase the possibility of daily extreme rainfall in particular regions in Indonesia at different seasons.


2021 ◽  
Vol 654 ◽  
pp. L5
Author(s):  
C. Pezzotti ◽  
O. Attia ◽  
P. Eggenberger ◽  
G. Buldgen ◽  
V. Bourrier

Context. TOI-849b is one of the few planets populating the hot-Neptune desert and it is the densest Neptune-sized one discovered so far. Its extraordinary proximity to the host star, together with the absence of a massive H/He envelope on top of the 40.8 M⊕ rocky core, calls into question the role played by the host star in the evolution of the system. Aims. We aim to study the impact of the host star’s rotational history on the evolution of TOI-849b, particularly focussing on the planetary migration due to dynamical tides dissipated in the stellar convective envelope, and on the high-energy stellar emission. Methods. Rotating stellar models of TOI-849 are coupled to our orbital evolution code to study the evolution of the planetary orbit. The evolution of the planetary atmosphere is studied by means of the JADE code, which uses realistic X-ray and extreme-ultraviolet (XUV) fluxes provided by our rotating stellar models. Results. Assuming that the planet was at its present-day position (ain = 0.01598 AU) at the protoplanetary disc dispersal, with mass 40.8 M⊕, and considering a broad range of host star initial surface rotation rates (Ωin ∈ [3.2, 18] Ω⊙), we find that only for Ωin ≤ 5 Ω⊙ do we reproduce the current position of the planet, given that for Ωin >  5 Ω⊙ its orbit is efficiently deflected by dynamical tides within the first ∼40 Myr of evolution. We also simulated the evolution of the orbit for values of ain ≠ 0.01598 AU for each of the considered rotational histories, confirming that the only combination suited to reproduce the current position of the planet is given by ain = 0.01598 AU and Ωin ≤ 5 Ω⊙. We tested the impact of increasing the initial mass of the planet on the efficiency of tides, finding that a higher initial mass (Min = 1 MJup) does not change the results reported above. Based on these results we computed the evolution of the planetary atmospheres with the JADE code for a large range of initial masses above a core mass of 40.8 M⊕, finding that the strong XUV-flux received by the planet is able to remove the entirety of the envelope within the first 50 Myr, even if it formed as a Jupiter-mass planet.


2021 ◽  
pp. 1-46
Author(s):  
Xiaojun Guo ◽  
Ning Zhao ◽  
Kazuyoshi Kikuchi ◽  
Tomoe Nasuno ◽  
Masuo Nakano ◽  
...  

AbstractRecent works have revealed that the wintertime atmospheric river (AR) activity is closely related to the 30–60-day tropical intraseasonal variability, yet it remains unclear whether summertime AR activity is also significantly influenced by the intraseasonal variability, often referred to as the boreal summer intraseasonal oscillation (BSISO). Diagnosing the 40-year (1979–2018) ERA5 reanalysis dataset, the present study examines the climatological features of ARs over the Indo-Pacific region during June to October and its associations with the BSISO. Results suggest that the western North Pacific Subtropical High (WNPSH) provides a favorable circulation background for the summertime AR activity, which conveys the moisture from the tropics to midlatitude North Pacific along its periphery. Our analysis reveals that the BSISO has substantial impacts on the occurrence and distribution of ARs. More ARs are found over the western North Pacific (WNP) when the BSISO convective envelope propagates northward to the subtropical regions, while fewer ARs can be seen when convection is suppressed there. Specifically, in phases 7–8, the active BSISO convection over the Philippine Sea induces a low-pressure anomaly and the corresponding anomalous cyclonic circulation, leading to the enhanced poleward moisture transport and more frequent AR activity over the WNP. Moreover, the WNP ARs tend to be longer and have larger sizes during these two phases. It is also found that more frequent occurrence of tropical cyclones in phases 7–8 can significantly enhance the moisture transport and AR occurrence over the WNP.


Author(s):  
Kareem El-Badry ◽  
Hans-Walter Rix ◽  
Eliot Quataert ◽  
Thomas Kupfer ◽  
Ken J Shen

Abstract We present a systematic survey for mass-transferring and recently-detached cataclysmic variables (CVs) with evolved secondaries, which are progenitors of extremely low mass white dwarfs (ELM WDs), AM CVn systems, and detached ultracompact binaries. We select targets below the main sequence in the Gaia colour-magnitude diagram with ZTF light curves showing large-amplitude ellipsoidal variability and orbital period Porb < 6 hr. This yields 51 candidates brighter than G = 18, of which we have obtained many-epoch spectra for 21. We confirm all 21 to be completely– or nearly–Roche lobe filling close binaries. 13 show evidence of ongoing mass transfer, which has likely just ceased in the other 8. Most of the secondaries are hotter than any previously known CV donors, with temperatures 4700 < Teff/K < 8000. Remarkably, all secondaries with $T_{\rm eff} \gtrsim 7000\, \rm K$ appear to be detached, while all cooler secondaries are still mass-transferring. This transition likely marks the temperature where magnetic braking becomes inefficient due to loss of the donor’s convective envelope. Most of the proto-WD secondaries have masses near 0.15 M⊙; their companions have masses near 0.8 M⊙. We infer a space density of $\sim 60\, \rm kpc^{-3}$, roughly 80 times lower than that of normal CVs and three times lower than that of ELM WDs. The implied Galactic birth rate, $\mathcal {R}\sim 60\, \rm Myr^{-1}$, is half that of AM CVn binaries. Most systems are well-described by MESA models for CVs in which mass transfer begins only as the donor leaves the main sequence. All are predicted to reach minimum periods 5 ≲ Porb/min ≲ 30 within a Hubble time, where they will become AM CVn binaries or merge. This sample triples the known evolved CV population and offers broad opportunities for improving understanding of the compact binary population.


Author(s):  
Zhaohuan Zhu ◽  
Yan-Fei Jiang ◽  
Hans Baehr ◽  
Andrew N Youdin ◽  
Philip J Armitage ◽  
...  

Abstract The core accretion model of giant planet formation has been challenged by the discovery of recycling flows between the planetary envelope and the disc that can slow or stall envelope accretion. We carry out 3D radiation hydrodynamic simulations with an updated opacity compilation to model the proto-Jupiter’s envelope. To isolate the 3D effects of convection and recycling, we simulate both isolated spherical envelopes and envelopes embedded in discs. The envelopes are heated at given rates to achieve steady states, enabling comparisons with 1D models. We vary envelope properties to obtain both radiative and convective solutions. Using a passive scalar, we observe significant mass recycling on the orbital timescale. For a radiative envelope, recycling can only penetrate from the disc surface until ∼0.1-0.2 planetary Hill radii, while for a convective envelope, the convective motion can ‘dredge up’ the deeper part of the envelope so that the entire convective envelope is recycled efficiently. This recycling, however, has only limited effects on the envelopes’ thermal structure. The radiative envelope embedded in the disc has identical structure as the isolated envelope. The convective envelope has a slightly higher density when it is embedded in the disc. We introduce a modified 1D approach which can fully reproduce our 3D simulations. With our updated opacity and 1D model, we recompute Jupiter’s envelope accretion with a 10 M⊕ core, and the timescale to runaway accretion is shorter than the disc lifetime as in prior studies. Finally, we discuss the implications of the efficient recycling on the observed chemical abundances of the planetary atmosphere (especially for super-Earths and mini-Neptunes).


2021 ◽  
Author(s):  
Hachem Dhouib ◽  
Stéphane Mathis ◽  
Florian Debras ◽  
Aurélie Astoul ◽  
Clément Baruteau

<p>Gaseous giant planets (Jupiter and Saturn in our solar system and hot Jupiters around other stars) are turbulent rotating magnetic objects that have strong and complex interactions with their environment (their moons in the case of Jupiter and Saturn and their host stars in the case of hot Jupiters/Saturns). In such systems, the dissipation of tidal waves excited by tidal forces shape the orbital architecture and the rotational dynamics of the planets.</p> <p>During the last decade, a revolution has occurred for our understanding of tides in these systems. First, Lainey et al. (2009, 2012, 2017) have measured tidal dissipation stronger by one order of magnitude than expected in Jupiter and Saturn. Second, unexplained broad diversity of orbital architectures and large radius of some hot Jupiters are observed in exoplanetary systems. Finally, new constraints obtained thanks to <em>Kepler</em>/K2 and TESS indicate that tidal dissipation in gaseous giant exoplanets is weaker than in Jupiter and in Saturn (Ogilvie 2014, Van Eylen et al. 2018, Huber et al. 2019).</p> <p>Furthermore, the space mission JUNO and the grand finale of the CASSINI mission have revolutionized our knowledge of the interiors of giant planets. We now know, for example, that Jupiter is a very complex planet: it is a stratified planet with, from the surface to the core, a differentially rotating convective envelope, a first mixing zone (with stratified convection), a uniformly rotating magnetised convective zone, a second magnetized mixing zone (the diluted core, potentially in stratified convection) and a solid core (Debras & Chabrier 2019). So far, tides in these planets have been studied by assuming a simplified internal structure with a stable rocky and icy core (Remus et al. 2012, 2015) and a deep convective envelope surrounded by a thin stable atmosphere (Ogilvie & Lin 2004) where mixing processes, differential rotation and magnetic field were completely neglected.</p> <p>Our objective is thus to predict tidal dissipation using internal structure models, which agree with these last observational constrains. In this work, we build a new ab-initio model of tidal dissipation in giant planets that coherently takes into account the interactions of tidal waves with their complex stratification induced by the mixing of heavy elements, their zonal winds, and (dynamo) magnetic fields. This model is a semi-global model in the planetary equatorial plane. We study the linear excitation of tidal magneto-gravito-inertial progressive waves and standing modes. We take into account the buoyancy, the compressibility, the Coriolis acceleration (including differential rotation), and the Lorentz force. The tidal waves are submitted to the different potential dissipative processes: Ohmic, thermal, molecular diffusivities, and viscosity. We here present the general formalism and the potential regimes of parameters that should be explored. The quantities of interest such as tidal torque, dissipation, and heating are derived. This will pave the way for full 3D numerical simulations that will take into account complex internal structure and dynamics of gaseous giant (exo-)planets in spherical/spheroidal geometry.</p> <p> </p>


Author(s):  
Da-run Xiong

A non-local and time-dependent theory of convection was briefly described. This theory was used to calculate the structure of solar convection zones, the evolution of massive stars, lithium depletion in the atmosphere of the Sun and late-type dwarfs, and stellar oscillations (in Part Ⅱ). The results show that: 1) the theoretical turbulent velocity and temperature fields in the atmosphere and the thermal structure of the convective envelope of the Sun agree with the observations and inferences from helioseismic inversion very well. 2) The so-called semi-convection contradiction in the evolutionary calculations of massive stars was removed automatically, as predicted by us. The theoretical evolution tracks of massive stars run at higher luminosity and the main sequence band becomes noticeably wider in comparison with those calculated using the local mixing-length theory (MLT). This means that the evolutionary mass for a given luminosity was overestimated and the width of the main sequence band was underestimated by the local MLT, which may be part of the reason for the contradiction between the evolutionary and pulsational masses of Cepheid variables and the contradiction between theoretical and observed distributions of luminous stars in the H-R diagram. 3) The predicted lithium depletion, in general, agrees well with the observation of the Sun and Galactic open clusters of different ages. 4) Our theoretical results for non-adiabatic oscillations are in good agreement with the observed mode instability from classic variables of high-luminosity red giants. Almost all the instability strips of the classical pulsating variables (including the Cepheid, δ Scuti, γ Doradus, βCephei, and SPB strips) were reproduced (Part Ⅱ).


Sign in / Sign up

Export Citation Format

Share Document