scholarly journals Secondary Maximum in the Near‐Infrared Light Curves of Type Ia Supernovae

2006 ◽  
Vol 649 (2) ◽  
pp. 939-953 ◽  
Author(s):  
Daniel Kasen
2019 ◽  
Vol 4 (2) ◽  
pp. 188-195 ◽  
Author(s):  
O. Graur ◽  
K. Maguire ◽  
R. Ryan ◽  
M. Nicholl ◽  
A. Avelino ◽  
...  

2012 ◽  
Vol 538 ◽  
pp. A132 ◽  
Author(s):  
D. Jack ◽  
P. H. Hauschildt ◽  
E. Baron

2015 ◽  
Vol 220 (1) ◽  
pp. 9 ◽  
Author(s):  
Andrew S. Friedman ◽  
W. M. Wood-Vasey ◽  
G. H. Marion ◽  
Peter Challis ◽  
Kaisey S. Mandel ◽  
...  

2015 ◽  
Vol 2 (1) ◽  
pp. 205-211
Author(s):  
M. Kato ◽  
I. Hachisu

We briefly review the current theoretical understanding of the light curves of novae. These curves exhibit a homologous nature, dubbed the universal decline law, and when time-normalized, they almost follow a single curve independently of the white dwarf (WD) mass or chemical composition of the envelope. The optical and near-infrared light curves of novae are reproduced mainly by free-free emission from their optically thick winds. We can estimate the WD mass from multiwavelength observations because the optical, UV, and soft X-ray light curves evolve differently and we can easily resolve the degeneracy of the optical light curves. Recurrent novae and classical novae are a testbed of type Ia supernova scenarios. In the orbital period versus secondary mass diagram, recurrent novae are located in different regions from classical novae and the positions of recurrent novae are consistent with the single degenerate scenario.


2018 ◽  
Vol 859 (1) ◽  
pp. 24 ◽  
Author(s):  
Carlos Contreras ◽  
M. M. Phillips ◽  
Christopher R. Burns ◽  
Anthony L. Piro ◽  
B. J. Shappee ◽  
...  

2018 ◽  
Vol 611 ◽  
pp. A58 ◽  
Author(s):  
C. Gall ◽  
M. D. Stritzinger ◽  
C. Ashall ◽  
E. Baron ◽  
C. R. Burns ◽  
...  

We present an analysis of ultraviolet (UV) to near-infrared observations of the fast-declining Type Ia supernovae (SNe Ia) 2007on and 2011iv, hosted by the Fornax cluster member NGC 1404. The B-band light curves of SN 2007on and SN 2011iv are characterised by Δm15 (B) decline-rate values of 1.96 mag and 1.77 mag, respectively. Although they have similar decline rates, their peak B- and H-band magnitudes differ by ~ 0.60 mag and ~0.35 mag, respectively. After correcting for the luminosity vs. decline rate and the luminosity vs. colour relations, the peak B-band and H-band light curves provide distances that differ by ~ 14% and ~ 9%, respectively. These findings serve as a cautionary tale for the use of transitional SNe Ia located in early-type hosts in the quest to measure cosmological parameters. Interestingly, even though SN 2011iv is brighter and bluer at early times, by three weeks past maximum and extending over several months, its B − V colour is 0.12 mag redder than that of SN 2007on. To reconcile this unusual behaviour, we turn to guidance from a suite of spherical one-dimensional Chandrasekhar-mass delayed-detonation explosion models. In this context, 56Ni production depends on both the so-called transition density and the central density of the progenitor white dwarf. To first order, the transition density drives the luminosity–width relation, while the central density is an important second-order parameter. Within this context, the differences in the B − V colour evolution along the Lira regime suggest that the progenitor of SN 2011iv had a higher central density than SN 2007on.


Author(s):  
M. M. Phillips ◽  
K. Krisciunas ◽  
N. B. Suntzeff ◽  
M. Roth ◽  
L. Germany ◽  
...  

2012 ◽  
Vol 29 (4) ◽  
pp. 434-446 ◽  
Author(s):  
M. M. Phillips

AbstractThe photometric properties of Type Ia supernovae (SNe Ia) in the near-infrared as garnered from observations made over the last 30 years are reviewed. During this period, light curves for more than 120 nearby SNe Ia have been published, revealing considerable homogeneity but also some fascinating differences. These data have confirmed that, for all but the fastest declining objects, SNe Ia are essentially perfect standard candles in the near-infrared, displaying only a slight dependence of peak luminosity on decline rate and color.


1994 ◽  
Vol 147 ◽  
pp. 186-213
Author(s):  
J. Isern ◽  
R. Canal

AbstractIn this paper we review the behavior of growing stellar degenerate cores. It is shown that ONeMg white dwarfs and cold CO white dwarfs can collapse to form a neutron star. This collapse is completely silent since the total amount of radioactive elements that are expelled is very small and a burst of γ-rays is never produced. In the case of an explosion (always carbonoxygen cores), the outcome fits quite well the observed properties of Type Ia supernovae. Nevertheless, the light curves and the velocities measured at maximum are very homogeneous and the diversity introduced by igniting at different densities is not enough to account for the most extreme cases observed. It is also shown that a promising way out of this problem could be the He-induced detonation of white dwarfs with different masses. Finally, we outline that the location of the border line which separetes explosion from collapse strongly depends on the input physics adopted.


Sign in / Sign up

Export Citation Format

Share Document