classical novae
Recently Published Documents


TOTAL DOCUMENTS

332
(FIVE YEARS 32)

H-INDEX

36
(FIVE YEARS 3)

2021 ◽  
Vol 923 (1) ◽  
pp. 100
Author(s):  
Brian D. Metzger ◽  
Yossef Zenati ◽  
Laura Chomiuk ◽  
Ken J. Shen ◽  
Jay Strader

Abstract We explore the observational appearance of the merger of a low-mass star with a white dwarf (WD) binary companion. We are motivated by recent work finding that multiple tensions between the observed properties of cataclysmic variables (CVs) and standard evolution models are resolved if a large fraction of CV binaries merge as a result of unstable mass transfer. Tidal disruption of the secondary forms a geometrically thick disk around the WD, which subsequently accretes at highly super-Eddington rates. Analytic estimates and numerical hydrodynamical simulations reveal that outflows from the accretion flow unbind a large fraction ≳90% of the secondary at velocities ∼500–1000 km s−1 within days of the merger. Hydrogen recombination in the expanding ejecta powers optical transient emission lasting about a month with a luminosity ≳1038 erg s−1, similar to slow classical novae and luminous red novae from ordinary stellar mergers. Over longer timescales the mass accreted by the WD undergoes hydrogen shell burning, inflating the remnant into a giant of luminosity ∼300–5000 L ⊙, effective temperature T eff ≈ 3000 K, and lifetime ∼104–105 yr. We predict that ∼103–104 Milky Way giants are CV merger products, potentially distinguishable by atypical surface abundances. We explore whether any Galactic historical slow classical novae are masquerading CV mergers by identifying four such post-nova systems with potential giant counterparts for which a CV merger origin cannot be ruled out. We address whether the historical transient CK Vul and its gaseous/dusty nebula resulted from a CV merger.


2021 ◽  
Vol 257 (2) ◽  
pp. 49
Author(s):  
Laura Chomiuk ◽  
Justin D. Linford ◽  
Elias Aydi ◽  
Keith W. Bannister ◽  
Miriam I. Krauss ◽  
...  

Abstract We present radio observations (1–40 GHz) for 36 classical novae, representing data from over five decades compiled from the literature, telescope archives, and our own programs. Our targets display a striking diversity in their optical parameters (e.g., spanning optical fading timescales, t 2 = 1–263 days), and we find a similar diversity in the radio light curves. Using a brightness temperature analysis, we find that radio emission from novae is a mixture of thermal and synchrotron emission, with nonthermal emission observed at earlier times. We identify high brightness temperature emission (T B > 5 × 104 K) as an indication of synchrotron emission in at least nine (25%) of the novae. We find a class of synchrotron-dominated novae with mildly evolved companions, exemplified by V5589 Sgr and V392 Per, that appear to be a bridge between classical novae with dwarf companions and symbiotic binaries with giant companions. Four of the novae in our sample have two distinct radio maxima (the first dominated by synchrotron and the later by thermal emission), and in four cases the early synchrotron peak is temporally coincident with a dramatic dip in the optical light curve, hinting at a common site for particle acceleration and dust formation. We publish the light curves in a machine-readable table and encourage the use of these data by the broader community in multiwavelength studies and modeling efforts.


Author(s):  
Laura Chomiuk ◽  
Brian D. Metzger ◽  
Ken J. Shen

We survey our understanding of classical novae—nonterminal, thermonuclear eruptions on the surfaces of white dwarfs in binary systems. The recent and unexpected discovery of GeV gamma rays from Galactic novae has highlighted the complexity of novae and their value as laboratories for studying shocks and particle acceleration. We review half a century of nova literature through this new lens, and conclude the following: ▪ The basics of the thermonuclear runaway theory of novae are confirmed by observations. The white dwarf sustains surface nuclear burning for some time after runaway, and until recently, it was commonly believed that radiation from this nuclear burning solely determines the nova's bolometric luminosity. ▪ The processes by which novae eject material from the binary system remain poorly understood. Mass loss from novae is complex (sometimes fluctuating in rate, velocity, and morphology) and often prolonged in time over weeks, months, or years. ▪ The complexity of the mass ejection leads to gamma-ray-producing shocks internal to the nova ejecta. When gamma rays are detected (around optical maximum), the shocks are deeply embedded and the surrounding gas is very dense. ▪ Observations of correlated optical and gamma-ray light curves confirm that the shocks are radiative and contribute significantly to the bolometric luminosity of novae. Novae are therefore the closest and most common interaction-powered transients. Expected final online publication date for the Annual Review of Astronomy and Astrophysics, Volume 59 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 910 (2) ◽  
pp. 120
Author(s):  
A. Kawash ◽  
L. Chomiuk ◽  
J. Strader ◽  
E. Aydi ◽  
K. V. Sokolovsky ◽  
...  

2021 ◽  
Vol 503 (1) ◽  
pp. 704-714
Author(s):  
Dominic McLoughlin ◽  
Katherine M Blundell ◽  
Steven Lee ◽  
Chris McCowage

ABSTRACT The classical nova YZ Reticuli was discovered in 2020 July. Shortly after this, we commenced a sustained, highly time-sampled coverage of its subsequent rapid evolution with time-resolved spectroscopy from the Global Jet Watch observatories. Its H-alpha complex exhibited qualitatively different spectral signatures in the following weeks and months. We find that these H-alpha complexes are well described by the same five Gaussian emission components throughout the six months following eruption. These five components appear to constitute two pairs of lines, from jet outflows and an accretion disc, together with an additional central component. The correlated, symmetric patterns that these jet/accretion disc pairs exhibit suggest precession, probably in response to the large perturbation caused by the nova eruption. The jet and accretion disc signatures persist from the first 10 d after brightening – evidence that the accretion disc survived the disruption. We also compare another classical nova (V6568 Sgr) that erupted in 2020 July whose H-alpha complex can be described analogously, but with faster line-of-sight jet speeds exceeding 4000 km s−1. We suggest that classical novae with higher mass white dwarfs bridge the gap between recurrent novae and classical novae such as YZ Reticuli.


Sign in / Sign up

Export Citation Format

Share Document