scholarly journals A Bar Fuels a Supermassive Black Hole?: Host Galaxies of Narrow‐Line Seyfert 1 Galaxies

2007 ◽  
Vol 169 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Kouji Ohta ◽  
Kentaro Aoki ◽  
Toshihiro Kawaguchi ◽  
Gaku Kiuchi

2018 ◽  
Vol 610 ◽  
pp. A14 ◽  
Author(s):  
T. Krühler ◽  
M. Fraser ◽  
G. Leloudas ◽  
S. Schulze ◽  
N. C. Stone ◽  
...  

The progenitors of astronomical transients are linked to a specific stellar population and galactic environment, and observing their host galaxies hence constrains the physical nature of the transient itself. Here, we use imaging from the Hubble Space Telescope, and spatially resolved, medium-resolution spectroscopy from the Very Large Telescope obtained with X-shooter and MUSE to study the host of the very luminous transient ASASSN-15lh. The dominant stellar population at the transient site is old (around 1 to 2 Gyr) without signs of recent star formation. We also detect emission from ionized gas, originating from three different, time invariable, narrow components of collisionally excited metal and Balmer lines. The ratios of emission lines in the Baldwin-Phillips-Terlevich diagnostic diagram indicate that the ionization source is a weak active galactic nucleus with a black hole mass of M• = 5-3+8 × 108 M⊙, derived through the M•-σ relation. The narrow line components show spatial and velocity offsets on scales of 1 kpc and 500 km s-1, respectively; these offsets are best explained by gas kinematics in the narrow-line region. The location of the central component, which we argue is also the position of the supermassive black hole, aligns with that of the transient within an uncertainty of 170 pc. Using this positional coincidence as well as other similarities with the hosts of tidal disruption events, we strengthen the argument that the transient emission observed as ASASSN-15lh is related to the disruption of a star around a supermassive black hole, most probably spinning with a Kerr parameter a• ≳ 0.5.



2021 ◽  
Vol 503 (3) ◽  
pp. 3629-3642
Author(s):  
Colin DeGraf ◽  
Debora Sijacki ◽  
Tiziana Di Matteo ◽  
Kelly Holley-Bockelmann ◽  
Greg Snyder ◽  
...  

ABSTRACT With projects such as Laser Interferometer Space Antenna (LISA) and Pulsar Timing Arrays (PTAs) expected to detect gravitational waves from supermassive black hole mergers in the near future, it is key that we understand what we expect those detections to be, and maximize what we can learn from them. To address this, we study the mergers of supermassive black holes in the Illustris simulation, the overall rate of mergers, and the correlation between merging black holes and their host galaxies. We find these mergers occur in typical galaxies along the MBH−M* relation, and that between LISA and PTAs we expect to probe the full range of galaxy masses. As galaxy mergers can trigger star formation, we find that galaxies hosting low-mass black hole mergers tend to show a slight increase in star formation rates compared to a mass-matched sample. However, high-mass merger hosts have typical star formation rates, due to a combination of low gas fractions and powerful active galactic nucleus feedback. Although minor black hole mergers do not correlate with disturbed morphologies, major mergers (especially at high-masses) tend to show morphological evidence of recent galaxy mergers which survive for ∼500 Myr. This is on the same scale as the infall/hardening time of merging black holes, suggesting that electromagnetic follow-ups to gravitational wave signals may not be able to observe this correlation. We further find that incorporating a realistic time-scale delay for the black hole mergers could shift the merger distribution towards higher masses, decreasing the rate of LISA detections while increasing the rate of PTA detections.



2009 ◽  
Vol 5 (S267) ◽  
pp. 421-428
Author(s):  
Philip F. Hopkins

AbstractRecent observations of tight correlations between supermassive black hole masses and the properties of their host galaxies demonstrate that black holes and bulges are co-eval and have motivated theoretical models in which feedback from AGN activity regulates the black hole and host galaxy evolution. Combining simulations, analytic models, and recent observations, answers to a number of questions are starting to take shape: how do AGN get triggered? How long do they live? What are typical light curves and what sets them? Is feedback necessary and/or sufficient to regulate BH growth? What effects does that feedback have on the host galaxy? On the host halo? All of this also highlights questions that remain wide open: how does gas get from a few pc to the AGN? What are the actual microphysical mechanisms of feedback? What is the tradeoff between stellar and AGN feedback? And, if there are different “modes” of feedback, where/when are each important?



2007 ◽  
Vol 3 (S245) ◽  
pp. 219-222
Author(s):  
Philip F. Hopkins

AbstractWe study observed correlations between supermassive black hole (BHs) and the properties of their host galaxies, and show that the observations define a BH “fundamental plane” (BHFP), of the form $\mbh\propto\sigma^{3.0\pm0.3}\,\re^{0.43\pm0.19}$ or $\mbh\propto\mstar^{0.54\pm0.17}\,\sigma^{2.2\pm0.5}$, analogous to the FP of elliptical galaxies. The BHFP is preferred over a simple relation between MBH and any of σ, M*, Mdyn, or Re alone at > 3 σ (99.9%) significance. The existence of this BHFP has important implications for the formation of supermassive BHs and the masses of the very largest black holes, and immediately resolves several apparent conflicts between the BH masses expected and measured for outliers in both the MBH − σ and MBH − M* relations.



2020 ◽  
Vol 642 ◽  
pp. A149
Author(s):  
F. Vito ◽  
W. N. Brandt ◽  
B. D. Lehmer ◽  
C. Vignali ◽  
F. Zou ◽  
...  

Context. Galaxy clusters in the local universe descend from high-redshift overdense regions known as protoclusters. The large gas reservoirs and high rate of galaxy interaction in protoclusters are expected to enhance star-formation activity and trigger luminous supermassive black-hole accretion in the nuclear regions of the host galaxies. Aims. We investigated the active galactic nucleus (AGN) content of a gas-rich and starbursting protocluster at z = 4.002, known as the Distant Red Core (DRC). In particular, we search for luminous and possibly obscured AGN in 13 identified members of the structure, and compare the results with protoclusters at lower redshifts. We also test whether a hidden AGN can power the Lyα blob (LAB) detected with VLT/MUSE in the DRC. Methods. We observed all of the identified members of the structure with 139 ks of Chandra ACIS-S imaging. Being less affected by absorption than optical and IR bands, even in the presence of large column densities of obscuring material, X-ray observations are the best tools to detect ongoing nuclear activity in the DRC galaxies. Results. We detect obscured X-ray emission from the two most gas-rich members of the DRC, named DRC-1 and DRC-2. Both of them are resolved into multiple interacting clumps in high-resolution Atacama Large Millimeter Array and Hubble Space Telescope observations. In particular, DRC-2 is found to host a luminous (L2−10 keV ≈ 3 × 1045 erg s−1 ) Compton-thick (NH ≳ 1024 cm−2) quasar (QSO) candidate, comparable to the most luminous QSOs known at all cosmic times. The AGN fraction among DRC members is consistent with results found for lower redshift protoclusters. However, X-ray stacking analysis reveals that supermassive black hole (SMBH) accretion is likely also taking place in other DRC galaxies that are not detected individually by Chandra. Conclusions. The luminous AGN detected in the most gas-rich galaxies in the DRC and the widespread SMBH accretion in the other members, which is suggested by stacking analysis, point toward the presence of a strong link between large gas reservoirs, galaxy interactions, and luminous and obscured nuclear activity in protocluster members. The powerful and obscured QSO detected in DRC-2 is likely powering the nearby LAB detected with VLT/MUSE, possibly through photoionization; however, we propose that the diffuse Lyα emission may be due to gas shocked by a massive outflow launched by DRC-2 over a ≈10 kpc scale.



2003 ◽  
Vol 208 ◽  
pp. 455-456
Author(s):  
Jeremy Tinker ◽  
Barbara Ryden

We present results of numerical simulations of mergers of spiral galaxies using GADGET (Springel, Yoshida, & White 2001). In three of these simulations one of the progenitor galaxies contained a central supermassive black hole (BH), as well as one simulation which did not contain a BH. The merger remnants were evolved to an age of ∼ 13 Gyr to examine the evolution of the shape of each merger remnant. The results of these simulations were compared to observations of elliptical galaxies, which show that older galaxies appear rounder than younger ones (Ryden, Forbes, & Terlevich 2001).We found that the simulations in which the BH mass was fixed throughout the evolution influence the shape of their host galaxies on timescales less than 3 Gyr. These simulations show little trend of shape with age beyond this time. In the simulations in which the BH mass increased linearly over the duration of the simulation, there is a significant evolution of the shape of the remnant throughout its lifetime, comparable to the observational trend.



2015 ◽  
Vol 11 (A29B) ◽  
pp. 329-335
Author(s):  
R. M. Shannon

AbstractBy monitoring the arrival times from millisecond pulsars for years to decades, it is possible to search for, or place limits on, nanohertz frequency gravitational radiation. The most promising source of gravitational waves in this band is a stochastic background emitted from a population of supermassive black hole binaries. As these binaries are the direct product of of galaxy mergers and the properties of the SMBHs correlated strongly with their host galaxies, the gravitational wave emission of the binaries can be used to study how galaxies evolve. Here I discuss how pulsar timing can be used to search for gravitational waves, and how limits on the strength of the background are being used to challenge models of supermassive black hole formation and evolution.



2020 ◽  
Vol 500 (2) ◽  
pp. 2177-2187 ◽  
Author(s):  
A Cruz ◽  
A Pontzen ◽  
M Volonteri ◽  
T R Quinn ◽  
M Tremmel ◽  
...  

ABSTRACT Using cosmological hydrodynamic simulations with physically motivated models of supermassive black hole (SMBH) formation and growth, we compare the assembly of Milky Way-mass (Mvir ≈ 7 × 1011 M⊙ at z = 0) galaxies in cold dark matter (CDM) and self-interacting dark matter (SIDM) models. Our SIDM model adopts a constant cross-section of 1 cm2 g−1. We find that SMBH formation is suppressed in the early Universe due to SIDM interactions. SMBH–SMBH mergers are also suppressed in SIDM as a consequence of the lower number of SMBHs formed. Lack of initial merger-driven SMBH growth in turn delays SMBH growth by billions of years in SIDM compared to CDM. Further, we find that this delayed growth suppresses SMBH accretion in the largest progenitors of the main SIDM galaxies during the first 5 Gyr of their evolution. Nonetheless, by z = 0.8 the CDM and SIDM SMBH masses differ only by around 0.2 dex, so that both remain compatible with the MBH–M* relation. We show that the reduced accretion causes the SIDM SMBHs to less aggressively regulate star formation in their host galaxies than their CDM counterparts, resulting in a factor of 3 or more stars being produced over the lifetime of the SIDM galaxies compared to the CDM galaxies. Our results highlight a new way in which SIDM can affect the growth and merger history of SMBHs and ultimately give rise to very different galaxy evolution compared to the classic CDM model.



2018 ◽  
Vol 618 ◽  
pp. A127 ◽  
Author(s):  
Ludovica Varisco ◽  
Tullia Sbarrato ◽  
Giorgio Calderone ◽  
Massimo Dotti

Virial–based methods for estimating active supermassive black hole masses are now commonly used on extremely large spectroscopic quasar catalogs. Most spectral analyses, though, do not pay enough attention to the detailed continuum decomposition. To understand how this affects virial mass estimates, we test the influence of host galaxy light on them, along with a Balmer continuum component. A detailed fit with the new spectroscopic analysis software QSFIT demonstrates that the presence or absence of continuum components does not significantly affect the virial-based results for our sample. Taking a host galaxy component into consideration or not, instead, affects the emission line fitting in a more pronounced way at lower redshifts, where in fact we observe dimmer quasars and more visible host galaxies.



2015 ◽  
Vol 576 ◽  
pp. A32 ◽  
Author(s):  
M. Gatti ◽  
A. Lamastra ◽  
N. Menci ◽  
A. Bongiorno ◽  
F. Fiore


Sign in / Sign up

Export Citation Format

Share Document