scholarly journals A black hole fundamental plane

2007 ◽  
Vol 3 (S245) ◽  
pp. 219-222
Author(s):  
Philip F. Hopkins

AbstractWe study observed correlations between supermassive black hole (BHs) and the properties of their host galaxies, and show that the observations define a BH “fundamental plane” (BHFP), of the form $\mbh\propto\sigma^{3.0\pm0.3}\,\re^{0.43\pm0.19}$ or $\mbh\propto\mstar^{0.54\pm0.17}\,\sigma^{2.2\pm0.5}$, analogous to the FP of elliptical galaxies. The BHFP is preferred over a simple relation between MBH and any of σ, M*, Mdyn, or Re alone at > 3 σ (99.9%) significance. The existence of this BHFP has important implications for the formation of supermassive BHs and the masses of the very largest black holes, and immediately resolves several apparent conflicts between the BH masses expected and measured for outliers in both the MBH − σ and MBH − M* relations.

2003 ◽  
Vol 208 ◽  
pp. 455-456
Author(s):  
Jeremy Tinker ◽  
Barbara Ryden

We present results of numerical simulations of mergers of spiral galaxies using GADGET (Springel, Yoshida, & White 2001). In three of these simulations one of the progenitor galaxies contained a central supermassive black hole (BH), as well as one simulation which did not contain a BH. The merger remnants were evolved to an age of ∼ 13 Gyr to examine the evolution of the shape of each merger remnant. The results of these simulations were compared to observations of elliptical galaxies, which show that older galaxies appear rounder than younger ones (Ryden, Forbes, & Terlevich 2001).We found that the simulations in which the BH mass was fixed throughout the evolution influence the shape of their host galaxies on timescales less than 3 Gyr. These simulations show little trend of shape with age beyond this time. In the simulations in which the BH mass increased linearly over the duration of the simulation, there is a significant evolution of the shape of the remnant throughout its lifetime, comparable to the observational trend.


2021 ◽  
Vol 503 (3) ◽  
pp. 3629-3642
Author(s):  
Colin DeGraf ◽  
Debora Sijacki ◽  
Tiziana Di Matteo ◽  
Kelly Holley-Bockelmann ◽  
Greg Snyder ◽  
...  

ABSTRACT With projects such as Laser Interferometer Space Antenna (LISA) and Pulsar Timing Arrays (PTAs) expected to detect gravitational waves from supermassive black hole mergers in the near future, it is key that we understand what we expect those detections to be, and maximize what we can learn from them. To address this, we study the mergers of supermassive black holes in the Illustris simulation, the overall rate of mergers, and the correlation between merging black holes and their host galaxies. We find these mergers occur in typical galaxies along the MBH−M* relation, and that between LISA and PTAs we expect to probe the full range of galaxy masses. As galaxy mergers can trigger star formation, we find that galaxies hosting low-mass black hole mergers tend to show a slight increase in star formation rates compared to a mass-matched sample. However, high-mass merger hosts have typical star formation rates, due to a combination of low gas fractions and powerful active galactic nucleus feedback. Although minor black hole mergers do not correlate with disturbed morphologies, major mergers (especially at high-masses) tend to show morphological evidence of recent galaxy mergers which survive for ∼500 Myr. This is on the same scale as the infall/hardening time of merging black holes, suggesting that electromagnetic follow-ups to gravitational wave signals may not be able to observe this correlation. We further find that incorporating a realistic time-scale delay for the black hole mergers could shift the merger distribution towards higher masses, decreasing the rate of LISA detections while increasing the rate of PTA detections.


2016 ◽  
Vol 12 (S324) ◽  
pp. 342-346
Author(s):  
Antti Rantala ◽  
Pauli Pihajoki ◽  
Peter H. Johansson

AbstractWe present KETJU, a new regularized tree code based on algorithmic chain regularization and implemented into Gadget-3. This new code is able to follow simultaneously galactic-scale dynamical and astrophysical processes and the small-scale supermassive black hole binary dynamics. We present here the general idea of this new code and show a test simulation of black hole binary dynamics in a galaxy merger of two massive elliptical galaxies. The separation of the black holes at the time of the merger is several orders of magnitude smaller in KETJU than when compared to ordinary Gadget-3 simulations. The merger timescale is also longer by 100 − 200 Myr.


2019 ◽  
Vol 14 (S351) ◽  
pp. 80-83 ◽  
Author(s):  
Melvyn B. Davies ◽  
Abbas Askar ◽  
Ross P. Church

AbstractSupermassive black holes are found in most galactic nuclei. A large fraction of these nuclei also contain a nuclear stellar cluster surrounding the black hole. Here we consider the idea that the nuclear stellar cluster formed first and that the supermassive black hole grew later. In particular we consider the merger of three stellar clusters to form a nuclear stellar cluster, where some of these clusters contain a single intermediate-mass black hole (IMBH). In the cases where multiple clusters contain IMBHs, we discuss whether the black holes are likely to merge and whether such mergers are likely to result in the ejection of the merged black hole from the nuclear stellar cluster. In some cases, no supermassive black hole will form as any merger product is not retained. This is a natural pathway to explain those galactic nuclei that contain a nuclear stellar cluster but apparently lack a supermassive black hole; M33 being a nearby example. Alternatively, if an IMBH merger product is retained within the nuclear stellar cluster, it may subsequently grow, e.g. via the tidal disruption of stars, to form a supermassive black hole.


2019 ◽  
Vol 15 (S356) ◽  
pp. 143-143
Author(s):  
Jaya Maithil ◽  
Michael S. Brotherton ◽  
Bin Luo ◽  
Ohad Shemmer ◽  
Sarah C. Gallagher ◽  
...  

AbstractActive Galactic Nuclei (AGN) exhibit multi-wavelength properties that are representative of the underlying physical processes taking place in the vicinity of the accreting supermassive black hole. The black hole mass and the accretion rate are fundamental for understanding the growth of black holes, their evolution, and the impact on the host galaxies. Recent results on reverberation-mapped AGNs show that the highest accretion rate objects have systematic shorter time-lags. These super-Eddington accreting massive black holes (SEAMBHs) show BLR size 3-8 times smaller than predicted by the Radius-Luminosity (R-L) relationship. Hence, the single-epoch virial black hole mass estimates of highly accreting AGNs have an overestimation of a factor of 3-8 times. SEAMBHs likely have a slim accretion disk rather than a thin disk that is diagnostic in X-ray. I will present the extreme X-ray properties of a sample of dozen of SEAMBHs. They indeed have a steep hard X-ray photon index, Γ, and demonstrate a steeper power-law slope, ασx.


2019 ◽  
Vol 15 (S356) ◽  
pp. 376-376
Author(s):  
Ingyin Zaw

AbstractNuclear black holes in dwarf galaxies are important for understanding the low end of the supermassive black hole mass distribution and the black hole-host galaxy scaling relations. IC 750 is a rare system which hosts an AGN, found in ˜0.5% of dwarf galaxies, with circumnuclear 22 GHz water maser emission, found in ˜3–5% of Type 2 AGNs. Water masers, the only known tracer of warm, dense gas in the center parsec of AGNs resolvable in position and velocity, provide the most precise and accurate mass measurements of SMBHs outside the local group. We have mapped the maser emission in IC 750 and find that it traces a nearly edge-on warped disk, 0.2 pc in diameter. The central black hole has an upper limit mass of ˜1 × 105 M⊙ and a best fit mass of ˜8 × 104 M⊙, one to two orders of magnitude below what is expected from black hole-galaxy scaling relations. This has implications for models of black hole seed formation in the early universe, the growth of black holes, and their co-evolution with their host galaxies.


1997 ◽  
Vol 163 ◽  
pp. 620-625 ◽  
Author(s):  
H. Ford ◽  
Z. Tsvetanov ◽  
L. Ferrarese ◽  
G. Kriss ◽  
W. Jaffe ◽  
...  

AbstractHST images have led to the discovery that small (r ~ 1″ r ~ 100 – 200 pc), well-defined, gaseous disks are common in the nuclei of elliptical galaxies. Measurements of rotational velocities in the disks provide a means to measure the central mass and search for massive black holes in the parent galaxies. The minor axes of these disks are closely aligned with the directions of the large–scale radio jets, suggesting that it is angular momentum of the disk rather than that of the black hole that determines the direction of the radio jets. Because the disks are directly observable, we can study the disks themselves, and investigate important questions which cannot be directly addressed with observations of the smaller and unresolved central accretion disks. In this paper we summarize what has been learned to date in this rapidly unfolding new field.


2009 ◽  
Vol 5 (S267) ◽  
pp. 151-160 ◽  
Author(s):  
Bradley M. Peterson

AbstractWe review briefly direct and indirect methods of measuring the masses of black holes in galactic nuclei, and then focus attention on supermassive black holes in active nuclei, with special attention to results from reverberation mapping and their limitations. We find that the intrinsic scatter in the relationship between the AGN luminosity and the broad-line region size is very small, ~0.11 dex, comparable to the uncertainties in the better reverberation measurements. We also find that the relationship between reverberation-based black hole masses and host-galaxy bulge luminosities also seems to have surprisingly little intrinsic scatter, ~0.17 dex. We note, however, that there are still potential systematics that could affect the overall mass calibration at the level of a factor of a few.


2009 ◽  
Vol 5 (H15) ◽  
pp. 293-293
Author(s):  
Luca Ciotti

AbstractThe passively evolving stellar population in elliptical galaxies (Es) provides a continuous source of fuel for accretion on the central supermassive black hole (SMBH), which is 1) extended over the entire galaxy life (but declining with cosmic time), 2) linearly proportional to the stellar mass of the host spheroid, 3) summing up to a total gas mass that is > 100 times larger than the currently observed SMBH masses, 4) available independently of merging events. The main results of numerical simulations of Es with central SMBH, in which a physically based implementation of radiative and mechanical feedback effects is considered, are presented.


2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040054
Author(s):  
M. Yu. Piotrovich ◽  
V. L. Afanasiev ◽  
S. D. Buliga ◽  
T. M. Natsvlishvili

Based on spectropolarimetry for a number of active galactic nuclei in Seyfert 1 type galaxies observed with the 6-m BTA telescope, we have estimated the spins of the supermassive black holes at the centers of these galaxies. We have determined the spins based on the standard Shakura-Sunyaev accretion disk model. More than 70% of the investigated active galactic nuclei are shown to have Kerr supermassive black holes with a dimensionless spin greater than 0.9.


Sign in / Sign up

Export Citation Format

Share Document