scholarly journals Bactericidal Antibody Responses Elicited by a Meningococcal Outer Membrane Vesicle Vaccine with Overexpressed Factor H–Binding Protein and Genetically Attenuated Endotoxin

2008 ◽  
Vol 198 (2) ◽  
pp. 262-270 ◽  
Author(s):  
Oliver Koeberling ◽  
Anja Seubert ◽  
Dan M. Granoff
2008 ◽  
Vol 16 (2) ◽  
pp. 156-162 ◽  
Author(s):  
Oliver Koeberling ◽  
Serena Giuntini ◽  
Anja Seubert ◽  
Dan M. Granoff

ABSTRACT Meningococcal outer membrane vesicle (OMV) vaccines, which are treated with detergents to decrease endotoxin activity, are safe and effective in humans. However, the vaccines elicit serum bactericidal antibody responses largely directed against PorA, which is antigenically variable. We previously prepared a native (non-detergent-treated) OMV vaccine from a mutant of group B strain H44/76 in which the lpxL1 gene was inactivated, which resulted in penta-acylated lipid A with attenuated endotoxin activity. To enhance protection, we overexpressed factor H binding protein (fHbp) from the antigenic variant 1 group. The vaccine elicited broad serum bactericidal antibody responses in mice against strains with fHbp variant 1 (∼70% of group B isolates) but not against strains with variant 2 or 3. In the present study, we constructed a mutant of group B strain NZ98/254 with attenuated endotoxin that expressed both endogenous variant 1 and heterologous fHbp variant 2. A mixture of the two native OMV vaccines from the H44/76 and NZ98/254 mutants stimulated proinflammatory cytokine responses by human peripheral blood mononuclear cells similar to those stimulated by control, detergent-treated OMV vaccines from the wild-type strains. In mice, the mixture of the two native OMV vaccines elicited broad serum bactericidal antibody responses against strains with heterologous PorA and fHbp in the variant 1, 2, or 3 group. By adsorption studies, the principal bactericidal antibody target was determined to be fHbp. Thus, native OMV vaccines from mutants expressing fHbp variants have the potential to be safe for humans and to confer broad protection against meningococcal disease from strains expressing fHbp from each of the antigenic variant groups.


PLoS ONE ◽  
2017 ◽  
Vol 12 (7) ◽  
pp. e0181508 ◽  
Author(s):  
Arianna Marini ◽  
Omar Rossi ◽  
Maria Grazia Aruta ◽  
Francesca Micoli ◽  
Simona Rondini ◽  
...  

2018 ◽  
Vol 219 (7) ◽  
pp. 1130-1137 ◽  
Author(s):  
Peter T Beernink ◽  
Emma Ispasanie ◽  
Lisa A Lewis ◽  
Sanjay Ram ◽  
Gregory R Moe ◽  
...  

Vaccine ◽  
2011 ◽  
Vol 29 (29-30) ◽  
pp. 4728-4734 ◽  
Author(s):  
Oliver Koeberling ◽  
Anja Seubert ◽  
George Santos ◽  
Annalisa Colaprico ◽  
Mildred Ugozzoli ◽  
...  

2012 ◽  
Vol 8 (5) ◽  
pp. e1002688 ◽  
Author(s):  
Peter T. Beernink ◽  
Jutamas Shaughnessy ◽  
Rolando Pajon ◽  
Emily M. Braga ◽  
Sanjay Ram ◽  
...  

mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Peter T. Beernink ◽  
Vianca Vianzon ◽  
Lisa A. Lewis ◽  
Gregory R. Moe ◽  
Dan M. Granoff

ABSTRACT MenB-4C (Bexsero; GlaxoSmithKline Biologicals) is a licensed meningococcal vaccine for capsular B strains. The vaccine contains detergent-extracted outer membrane vesicles (dOMV) and three recombinant proteins, of which one is factor H binding protein (FHbp). In previous studies, overexpression of FHbp in native OMV (NOMV) with genetically attenuated endotoxin (LpxL1) and/or by the use of mutant FHbp antigens with low factor H (FH) binding increased serum bactericidal antibody (SBA) responses. In this study, we immunized 13 infant macaques with 2 doses of NOMV with overexpressed mutant (R41S) FHbp with low binding to macaque FH (NOMV-FHbp). Control macaques received MenB-4C (n = 13) or aluminum hydroxide adjuvant alone (n = 4). NOMV-FHbp elicited a 2-fold higher IgG anti-FHbp geometric mean titer (GMT) than MenB-4C (P = 0.003), and the anti-FHbp repertoire inhibited binding of FH to FHbp, whereas anti-FHbp antibodies to MenB-4C enhanced FH binding. MenB-4C elicited a 10-fold higher GMT against strain NZ98/254, which was used to prepare the dOMV component, whereas NOMV-FHbp elicited an 8-fold higher GMT against strain H44/76, which was the parent of the mutant NOMV-FHbp vaccine strain. Against four strains with PorA mismatched to both of the vaccines and different FHbp sequence variants, NOMV-FHbp elicited 6- to 14-fold higher SBA GMTs than MenB-4C (P ≤ 0.0002). Two of 13 macaques immunized with MenB-4C but 0 of 17 macaques immunized with NOMV-FHbp or adjuvant developed serum anti-FH autoantibodies (P = 0.18). Thus, the mutant NOMV-FHbp approach has the potential to elicit higher and broader SBA responses than a licensed group B vaccine that contains wild-type FHbp that binds FH. The mutant NOMV-FHbp also might pose less of a risk of eliciting anti-FH autoantibodies. IMPORTANCE There are two licensed meningococcal capsular B vaccines. Both contain recombinant factor H binding protein (FHbp), which can bind to host complement factor H (FH). The limitations of these vaccines include a lack of protection against some meningococcal strains and the potential to elicit autoantibodies to FH. We immunized infant macaques with a native outer membrane vesicle (NOMV) vaccine with genetically attenuated endotoxin and overproduced mutant FHbp with low binding to FH. The NOMV-FHbp vaccine stimulated higher levels of protective serum antibodies than a licensed meningococcal group B vaccine against five of six genetically diverse meningococcal strains tested. Two of 13 macaques immunized with the licensed vaccine, which contains FHbp that binds macaque FH, but 0 of 17 macaques given NOMV-FHbp or the negative control developed serum anti-FH autoantibodies Thus, in a relevant nonhuman primate model, the NOMV-FHbp vaccine elicited greater protective antibodies than the licensed vaccine and may pose less of a risk of anti-FH autoantibody.


2011 ◽  
Vol 18 (5) ◽  
pp. 736-742 ◽  
Author(s):  
Oliver Koeberling ◽  
Isabel Delany ◽  
Dan M. Granoff

ABSTRACTNative outer membrane vesicles (NOMV) (not detergent treated), which are prepared from recombinant strains with attenuated endotoxin activity and overexpressed factor H binding protein (fHbp), elicited broad serum bactericidal antibody responses in mice. The amount of overexpressed fHbp required for optimal immunogenicity is not known. In this study we prepared NOMV vaccines from LpxL1 knockout (ΔLpxL1) mutants with penta-acylated lipooligosaccharide and attenuated endotoxin activity. The recombinant strains had wild-type (1×) fHbp expression or were engineered for 3-fold- or 10-fold-increased fHbp expression (3× or 10× fHbp). Control vaccines included NOMV from ΔLpxL1/ΔfHbp mutants or recombinant fHbp. In mice, only the 10× fHbp NOMV vaccine elicited significantly higher serum IgG anti-fHbp antibody titers than the corresponding 1× fHbp NOMV or recombinant fHbp vaccine. The 10× fHbp NOMV vaccine also elicited higher bactericidal responses (P< 0.05) against five group B strains with heterologous PorA than the recombinant fHbp or 1× fHbp NOMV vaccine. The 3× fHbp NOMV vaccine gave higher bactericidal titers against only one strain. Serum bactericidal titers in mice immunized with the control ΔfHbp NOMV vaccines were <1:10, and bactericidal titers in mice immunized with the 10× fHbp NOMV vaccine were <1:10 after adsorption of anti-fHbp antibodies. Mixing antiserum to NOMV vaccines from fHbp knockout mutants with antiserum to recombinant fHbp did not increase anti-fHbp bactericidal titers. Thus, a critical threshold of increased fHbp expression is required for NOMV vaccines to elicit broad serum bactericidal responses, and the antibodies conferring protection are directed primarily at fHbp.


2006 ◽  
Vol 74 (8) ◽  
pp. 4557-4565 ◽  
Author(s):  
Jamie Findlow ◽  
Stephen Taylor ◽  
Audun Aase ◽  
Rachel Horton ◽  
Robert Heyderman ◽  
...  

ABSTRACT The prediction of efficacy of Neisseria meningitidis serogroup B (MenB) vaccines is currently hindered due to the lack of an appropriate correlate of protection. For outer membrane vesicle (OMV) vaccines, immunogenicity has primarily been determined by the serum bactericidal antibody (SBA) assay and OMV enzyme-linked immunosorbent assay (ELISA). However, the opsonophagocytic assay (OPA), surface labeling assay, whole blood assay (WBA), and salivary antibody ELISA have been developed although correlation with protection is presently undetermined. Therefore, the aim of the study was to investigate further the usefulness of, and relationships between, MenB immunologic assays. A phase II trial of the OMV vaccine, MenBvac, with proven efficacy was initiated to compare immunologic assays incorporating the vaccine and six heterologous strains. Correlations were achieved between the SBA assay, OMV ELISA, and OPA using human polymorphonuclear leukocytes and human complement but not between an OPA using HL60 phagocytic cells and baby rabbit complement. Correlations between the surface labeling assay, the SBA assay, and the OMV ELISA were promising, although target strain dependent. Correlations between the salivary antibody ELISA and other assays were poor. Correlations to the WBA were prevented since many samples had results greater than the range of the assay. The study confirmed the immunogenicity and benefit of a third dose of MenBvac against the homologous vaccine strain using a variety of immunologic assays. These results emphasize the need for standardized methodologies that would allow a more robust comparison of assays between laboratories and promote their further evaluation as correlates of protection against MenB disease.


Sign in / Sign up

Export Citation Format

Share Document