Ants and Ant Scent Reduce Bumblebee Pollination of Artificial Flowers

2014 ◽  
Vol 183 (1) ◽  
pp. 133-139 ◽  
Author(s):  
Adam R. Cembrowski ◽  
Marcus G. Tan ◽  
James D. Thomson ◽  
Megan E. Frederickson
2006 ◽  
Vol 2 (2) ◽  
pp. 165-168 ◽  
Author(s):  
Dennis M Hansen ◽  
Karin Beer ◽  
Christine B Müller

Most floral nectars are clear as water, and the enigmatic coloured nectar in three endemic plant species in Mauritius has puzzled scientists studying it. One hypothesis about the possible ecological function of coloured nectar is that it serves as a visual signal for pollinators. Recent studies have shown that at least two of the three Mauritian plant species with coloured nectar are visited and pollinated by endemic Phelsuma geckos. We here provide experimental evidence for the visual signal hypothesis by showing that Phelsuma ornata geckos prefer coloured over clear nectar in artificial flowers. In flowering plants, coloured nectar could additionally function as an honest signal that allows pollinators to assert the presence and judge the size of a reward prior to flower visitation, and to adjust their behaviour accordingly, leading to increased pollinator efficiency. Our study provides a first step in understanding this rare and intriguing floral trait.


1897 ◽  
Vol s8-XI (283) ◽  
pp. 427-427
Author(s):  
Everard Home Coleman
Keyword(s):  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Michael JM Harrap ◽  
Sean A Rands ◽  
Natalie Hempel de Ibarra ◽  
Heather M Whitney

Pollinating insects utilise various sensory cues to identify and learn rewarding flower species. One such cue is floral temperature, created by captured sunlight or plant thermogenesis. Bumblebees, honeybees and stingless bees can distinguish flowers based on differences in overall temperature between flowers. We report here that floral temperature often differs between different parts of the flower creating a temperature structure or pattern. Temperature patterns are common, with 55% of 118 plant species thermographed, showing within-flower temperature differences greater than the 2°C difference that bees are known to be able to detect. Using differential conditioning techniques, we show that bumblebees can distinguish artificial flowers differing in temperature patterns comparable to those seen in real flowers. Thus, bumblebees are able to perceive the shape of these within-flower temperature patterns. Floral temperature patterns may therefore represent a new floral cue that could assist pollinators in the recognition and learning of rewarding flowers.


2017 ◽  
Vol 284 (1865) ◽  
pp. 20171097 ◽  
Author(s):  
Géraud de Premorel ◽  
Martin Giurfa ◽  
Christine Andraud ◽  
Doris Gomez

Iridescence—change of colour with changes in the angle of view or of illumination—is widespread in the living world, but its functions remain poorly understood. The presence of iridescence has been suggested in flowers where diffraction gratings generate iridescent colours. Such colours have been suggested to serve plant–pollinator communication. Here we tested whether a higher iridescence relative to corolla pigmentation would facilitate discrimination, learning and retention of iridescent visual targets. We conditioned bumblebees ( Bombus terrestris ) to discriminate iridescent from non-iridescent artificial flowers and we varied iridescence detectability by varying target iridescent relative to pigment optical effect. We show that bees rewarded on targets with higher iridescent relative to pigment effect required fewer choices to complete learning, showed faster generalization to novel targets exhibiting the same iridescence-to-pigment level and had better long-term memory retention. Along with optical measurements, behavioural results thus demonstrate that bees can learn iridescence-related cues as bona fide signals for flower reward. They also suggest that floral advertising may be shaped by competition between iridescence and corolla pigmentation, a fact that has important evolutionary implications for pollinators. Optical measurements narrow down the type of cues that bees may have used for learning. Beyond pollinator–plant communication, our experiments help understanding how receivers influence the evolution of iridescence signals generated by gratings.


Sign in / Sign up

Export Citation Format

Share Document