scholarly journals WHITE DWARF LUMINOSITY AND MASS FUNCTIONS FROM SLOAN DIGITAL SKY SURVEY SPECTRA

2007 ◽  
Vol 135 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Steven DeGennaro ◽  
Ted von Hippel ◽  
D. E. Winget ◽  
S. O. Kepler ◽  
Atsuko Nitta ◽  
...  
2017 ◽  
Vol 45 ◽  
pp. 1760023
Author(s):  
S. O. Kepler ◽  
Alejandra Daniela Romero ◽  
Ingrid Pelisoli ◽  
Gustavo Ourique

White dwarf stars are the final stage of most stars, born single or in multiple systems. We discuss the identification, magnetic fields, and mass distribution for white dwarfs detected from spectra obtained by the Sloan Digital Sky Survey up to Data Release 13 in 2016, which lead to the increase in the number of spectroscopically identified white dwarf stars from 5[Formula: see text]000 to 39[Formula: see text]000. This number includes only white dwarf stars with [Formula: see text], i.e., excluding the Extremely Low Mass white dwarfs, which are necessarily the byproduct of stellar interaction.


2020 ◽  
Vol 493 (2) ◽  
pp. 2127-2139 ◽  
Author(s):  
Christopher J Manser ◽  
Boris T Gänsicke ◽  
Nicola Pietro Gentile Fusillo ◽  
Richard Ashley ◽  
Elmé Breedt ◽  
...  

ABSTRACT A total of 1–3 per cent of white dwarfs are orbited by planetary dusty debris detectable as infrared emission in excess above the white dwarf flux. In a rare subset of these systems, a gaseous disc component is also detected via emission lines of the Ca ii 8600 Å triplet, broadened by the Keplerian velocity of the disc. We present the first statistical study of the fraction of debris discs containing detectable amounts of gas in emission at white dwarfs within a magnitude and signal-to-noise ratio limited sample. We select 7705 single white dwarfs spectroscopically observed by the Sloan Digital Sky Survey (SDSS) and Gaia with magnitudes g ≤ 19. We identify five gaseous disc hosts, all of which have been previously discovered. We calculate the occurrence rate of a white dwarf hosting a debris disc detectable via Ca ii emission lines as $0.067\, \pm \, ^{0.042}_{0.025}$ per cent. This corresponds to an occurrence rate for a dusty debris disc to have an observable gaseous component in emission as 4 ± $_{2}^{4}$ per cent. Given that variability is a common feature of the emission profiles of gaseous debris discs, and the recent detection of a planetesimal orbiting within the disc of SDSS J122859.93+104032.9, we propose that gaseous components are tracers for the presence of planetesimals embedded in the discs and outline a qualitative model. We also present spectroscopy of the Ca ii triplet 8600 Å region for 20 white dwarfs hosting dusty debris discs in an attempt to identify gaseous emission. We do not detect any gaseous components in these 20 systems, consistent with the occurrence rate that we calculated.


2014 ◽  
Vol 440 (4) ◽  
pp. 3184-3201 ◽  
Author(s):  
R. B. Baxter ◽  
P. D. Dobbie ◽  
Q. A. Parker ◽  
S. L. Casewell ◽  
N. Lodieu ◽  
...  

2004 ◽  
Vol 193 ◽  
pp. 382-386 ◽  
Author(s):  
Brian Warner ◽  
Patrick A. Woudt

AbstractThere are now four dwarf novae known with white dwarf primaries that show large amplitude non-radial oscillations of the kind seen in ZZ Cet stars. We compare the properties of these stars and point out that by the end of the Sloan Digital Sky Survey more than 30 should be known.


2009 ◽  
Vol 508 (1) ◽  
pp. 339-344 ◽  
Author(s):  
J. Krzesinski ◽  
S. J. Kleinman ◽  
A. Nitta ◽  
S. Hügelmeyer ◽  
S. Dreizler ◽  
...  

2014 ◽  
Vol 445 (2) ◽  
pp. 1331-1338 ◽  
Author(s):  
Lifang Li ◽  
Fenghui Zhang ◽  
Quanwang Han ◽  
Xiaoyang Kong ◽  
Xiaobo Gong

2015 ◽  
Vol 448 (3) ◽  
pp. 2260-2274 ◽  
Author(s):  
Nicola Pietro Gentile Fusillo ◽  
Boris T. Gänsicke ◽  
Sandra Greiss

2001 ◽  
Vol 549 (1) ◽  
pp. L109-L113 ◽  
Author(s):  
Hugh C. Harris ◽  
Brad M. S. Hansen ◽  
James Liebert ◽  
Daniel E. Vanden Berk ◽  
Scott F. Anderson ◽  
...  

2019 ◽  
Vol 486 (2) ◽  
pp. 2169-2183 ◽  
Author(s):  
S O Kepler ◽  
Ingrid Pelisoli ◽  
Detlev Koester ◽  
Nicole Reindl ◽  
Stephan Geier ◽  
...  

ABSTRACT White dwarfs carry information on the structure and evolution of the Galaxy, especially through their luminosity function and initial-to-final mass relation. Very cool white dwarfs provide insight into the early ages of each population. Examining the spectra of all stars with 3σ proper motion in the Sloan Digital Sky Survey Data Release 14, we report the classification for 20 088 spectroscopically confirmed white dwarfs, plus 415 hot subdwarfs, and 311 cataclysmic variables. We obtain Teff, log  g, and mass for hydrogen atmosphere white dwarf stars (DAs), warm helium atmosphere white dwarfs (DBs), hot subdwarfs (sdBs and sdOs), and estimate photometric Teff for white dwarf stars with continuum spectra (DCs). We find 15 793 sdAs and 447 dCs between the white dwarf cooling sequence and the main sequence, especially below $T_\mathrm{eff}\simeq 10\, 000$ K; most are likely low-mass metal-poor main-sequence stars, but some could be the result of interacting binary evolution.


2019 ◽  
Vol 489 (2) ◽  
pp. 1859-1879 ◽  
Author(s):  
Marc Huertas-Company ◽  
Vicente Rodriguez-Gomez ◽  
Dylan Nelson ◽  
Annalisa Pillepich ◽  
Connor Bottrell ◽  
...  

ABSTRACT We analyse the optical morphologies of galaxies in the IllustrisTNG simulation at z ∼ 0 with a convolutional neural network trained on visual morphologies in the Sloan Digital Sky Survey. We generate mock SDSS images of a mass complete sample of $\sim 12\, 000$ galaxies in the simulation using the radiative transfer code SKIRT and include PSF and noise to match the SDSS r-band properties. The images are then processed through the exact same neural network used to estimate SDSS morphologies to classify simulated galaxies in four morphological classes (E, S0/a, Sab, Scd). The CNN model classifies simulated galaxies in one of the four main classes with the same uncertainty as for observed galaxies. The mass–size relations of the simulated galaxies divided by morphological type also reproduce well the slope and the normalization of observed relations which confirms a reasonable diversity of optical morphologies in the TNG suite. However we find a weak correlation between optical morphology and Sersic index in the TNG suite as opposed to SDSS which might require further investigation. The stellar mass functions (SMFs) decomposed into different morphologies still show some discrepancies with observations especially at the high-mass end. We find an overabundance of late-type galaxies ($\sim 50{{\ \rm per\ cent}}$ versus $\sim 20{{\ \rm per\ cent}}$) at the high-mass end [log(M*/M⊙) > 11] of the SMF as compared to observations according to the CNN classifications and a lack of S0 galaxies ($\sim 20{{\ \rm per\ cent}}$ versus $\sim 40{{\ \rm per\ cent}}$) at intermediate masses. This work highlights the importance of detailed comparisons between observations and simulations in comparable conditions.


Sign in / Sign up

Export Citation Format

Share Document