scholarly journals Component masses of young, wide, non-magnetic white dwarf binaries in the Sloan Digital Sky Survey Data Release 7

2014 ◽  
Vol 440 (4) ◽  
pp. 3184-3201 ◽  
Author(s):  
R. B. Baxter ◽  
P. D. Dobbie ◽  
Q. A. Parker ◽  
S. L. Casewell ◽  
N. Lodieu ◽  
...  
2015 ◽  
Vol 448 (3) ◽  
pp. 2260-2274 ◽  
Author(s):  
Nicola Pietro Gentile Fusillo ◽  
Boris T. Gänsicke ◽  
Sandra Greiss

2019 ◽  
Vol 486 (2) ◽  
pp. 2169-2183 ◽  
Author(s):  
S O Kepler ◽  
Ingrid Pelisoli ◽  
Detlev Koester ◽  
Nicole Reindl ◽  
Stephan Geier ◽  
...  

ABSTRACT White dwarfs carry information on the structure and evolution of the Galaxy, especially through their luminosity function and initial-to-final mass relation. Very cool white dwarfs provide insight into the early ages of each population. Examining the spectra of all stars with 3σ proper motion in the Sloan Digital Sky Survey Data Release 14, we report the classification for 20 088 spectroscopically confirmed white dwarfs, plus 415 hot subdwarfs, and 311 cataclysmic variables. We obtain Teff, log  g, and mass for hydrogen atmosphere white dwarf stars (DAs), warm helium atmosphere white dwarfs (DBs), hot subdwarfs (sdBs and sdOs), and estimate photometric Teff for white dwarf stars with continuum spectra (DCs). We find 15 793 sdAs and 447 dCs between the white dwarf cooling sequence and the main sequence, especially below $T_\mathrm{eff}\simeq 10\, 000$ K; most are likely low-mass metal-poor main-sequence stars, but some could be the result of interacting binary evolution.


2014 ◽  
Vol 446 (4) ◽  
pp. 4078-4087 ◽  
Author(s):  
S. O. Kepler ◽  
I. Pelisoli ◽  
D. Koester ◽  
G. Ourique ◽  
S. J. Kleinman ◽  
...  

2015 ◽  
Vol 455 (4) ◽  
pp. 3413-3423 ◽  
Author(s):  
S. O. Kepler ◽  
I. Pelisoli ◽  
D. Koester ◽  
G. Ourique ◽  
A. D. Romero ◽  
...  

2017 ◽  
Vol 45 ◽  
pp. 1760023
Author(s):  
S. O. Kepler ◽  
Alejandra Daniela Romero ◽  
Ingrid Pelisoli ◽  
Gustavo Ourique

White dwarf stars are the final stage of most stars, born single or in multiple systems. We discuss the identification, magnetic fields, and mass distribution for white dwarfs detected from spectra obtained by the Sloan Digital Sky Survey up to Data Release 13 in 2016, which lead to the increase in the number of spectroscopically identified white dwarf stars from 5[Formula: see text]000 to 39[Formula: see text]000. This number includes only white dwarf stars with [Formula: see text], i.e., excluding the Extremely Low Mass white dwarfs, which are necessarily the byproduct of stellar interaction.


Author(s):  
Xin-Fa Deng ◽  
Guisheng Yu ◽  
Peng Jiang

AbstractUsing two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 7 , we explore influences of galaxy interactions on AGN activity. It is found that in the faint volume-limited sample, paired galaxies have a slightly higher AGN fraction than isolated galaxies, whereas in the luminous volume-limited sample, an opposite trend can be observed. The significance is <1σ. Thus, we do not observe strong evidence that interactions or mergers likely trigger the AGN activity.


2005 ◽  
Vol 621 (2) ◽  
pp. 643-650 ◽  
Author(s):  
David M. Goldberg ◽  
Timothy D. Jones ◽  
Fiona Hoyle ◽  
Randall R. Rojas ◽  
Michael S. Vogeley ◽  
...  

Universe ◽  
2019 ◽  
Vol 5 (6) ◽  
pp. 145 ◽  
Author(s):  
David Garofalo ◽  
Damian J. Christian ◽  
Andrew M. Jones

By exploring more than sixty thousand quasars from the Sloan Digital Sky Survey Data Release 5, Steinhardt & Elvis discovered a sub-Eddington boundary and a redshift-dependent drop-off at higher black hole mass, possible clues to the growth history of massive black holes. Our contribution to this special issue of Universe amounts to an application of a model for black hole accretion and jet formation to these observations. For illustrative purposes, we include ~100,000 data points from the Sloan Digital Sky Survey Data Release 7 where the sub-Eddington boundary is also visible and propose a theoretical picture that explains these features. By appealing to thin disk theory and both the lower accretion efficiency and the time evolution of jetted quasars compared to non-jetted quasars in our “gap paradigm”, we explain two features of the sub-Eddington boundary. First, we show that a drop-off on the quasar mass-luminosity plane for larger black hole mass occurs at all redshifts. But the fraction of jetted quasars is directly related to the merger function in this paradigm, which means the jetted quasar fraction drops with decrease in redshift, which allows us to explain a second feature of the sub-Eddington boundary, namely a redshift dependence of the slope of the quasar mass–luminosity boundary at high black hole mass stemming from a change in radiative efficiency with time. We are able to reproduce the mass dependence of, as well as the oscillating behavior in, the slope of the sub-Eddington boundary as a function of time. The basic physical idea involves retrograde accretion occurring only for a subset of the more massive black holes, which implies that most spinning black holes in our model are prograde accretors. In short, this paper amounts to a qualitative overview of how a sub-Eddington boundary naturally emerges in the gap paradigm.


2013 ◽  
Vol 22 (2) ◽  
Author(s):  
Xin-Fa Deng ◽  
Fuyang Zhang

AbstractFrom the apparent magnitude-limited the Main galaxy sample of the Sloan Digital Sky Survey Data Release 7, we construct a paired galaxy sample and a control sample without close companions with the projected separations


Sign in / Sign up

Export Citation Format

Share Document