dwarf stars
Recently Published Documents


TOTAL DOCUMENTS

864
(FIVE YEARS 138)

H-INDEX

63
(FIVE YEARS 8)

2022 ◽  
Vol 924 (2) ◽  
pp. 66
Author(s):  
Mitchell E. Yenawine ◽  
William F. Welsh ◽  
Jerome A. Orosz ◽  
Allyson Bieryla ◽  
William D. Cochran ◽  
...  

Abstract We explore the fascinating eclipses and dynamics of the compact hierarchical triple-star system KOI-126 (KIC 5897826). This system is composed of a pair of M-dwarf stars (KOI-126 B and C) in a 1.74 day orbit that revolve around an F star (KOI-126 A) every 34 days. Complex eclipse shapes are created as the M stars transit the F star, due to two effects: (1) the duration of the eclipse is a significant fraction of the M-star orbital period, so the prograde or retrograde motion of the M stars in their orbit lead to unusually short or long duration eclipses; (2) due to 3-body dynamics, the M-star orbit precesses with an astonishingly quick timescale of 1.74 yr for the periastron (apsidal) precession, and 2.73 yr for the inclination and nodal angle precession. Using the full Kepler data set, supplemented with ground-based photometry, plus 29 radial velocity measurements that span 6 yr, our photodynamical modeling yields masses of M A = 1.2713 ± 0.0047 M ⊙ (0.37%), M B = 0.23529 ± 0.00062 M ⊙ (0.26%), and M C = 0.20739 ± 0.00055 M ⊙ (0.27%) and radii of R A = 1.9984 ± 0.0027 R ⊙ (0.14%), R B = 0.25504 ± 0.00076 R ⊙ (0.3%), and R C = 0.23196 ± 0.00069 R ⊙ (0.3%). We also estimate the apsidal motion constant of the M dwarfs, a parameter that characterizes the internal mass distribution. Although it is not particularly precise, we measure a mean apsidal motion constant, k 2 ¯ , of 0.046 − 0.028 + 0.046 , which is approximately 2σ lower than the theoretical model prediction of 0.150. We explore possible causes for this discrepancy.


Author(s):  
Paul A. Bradley

Most pulsating white dwarf stars pulsate with many periods, each of which is a probe of their interior, which has made asteroseismolgy of these stars an active field. However, disentangling the multiple periodicities requires long, uninterrupted strings of data. We briefly describe the history of multi-site observing campaigns that culminated in the development of the Whole Earth Telescope in the late 1980s that still functions today. Through examples from the May 1990 campaign on GD 358, we show how critical it is to eliminate periodic gaps in data to greatly reduce aliasing in Fourier Transforms normally used to analyze the frequency content of pulsating white dwarfs. We close with a brief description of space satellite-based data, along with the advantages and disadvantages of these data compared to ground-based data.


2021 ◽  
Vol 922 (2) ◽  
pp. 211
Author(s):  
Zexi Niu ◽  
Haibo Yuan ◽  
Song Wang ◽  
Jifeng Liu

Abstract Based on the large volume Gaia Early Data Release 3 and LAMOST Data Release 5 data, we estimate the bias-corrected binary fractions of the field late G and early K dwarfs. A stellar locus outlier method is used in this work, which works well for binaries of various periods and inclination angles with single-epoch data. With a well-selected, distance-limited sample of about 90,000 GK dwarfs covering wide stellar chemical abundances, it enables us to explore the binary fraction variations with different stellar populations. The average binary fraction is 0.42 ± 0.01 for the whole sample. Thin-disk stars are found to have a binary fraction of 0.39 ± 0.02, thick-disk stars have a higher one of 0.49 ± 0.02, while inner halo stars possibly have the highest binary fraction. For both the thin- and thick-disk stars, the binary fractions decrease toward higher [Fe/H], [α/H], and [M/H] abundances. However, the suppressing impacts of [Fe/H], [α/H], and [M/H] are more significant for the thin-disk stars than those for the thick-disk stars. For a given [Fe/H], a positive correlation between [α/Fe] and the binary fraction is found for the thin-disk stars. However, this tendency disappears for the thick-disk stars. We suspect that it is likely related to the different formation histories of the thin and thick disks. Our results provide new clues for theoretical works on binary formation.


Author(s):  
Kuantay Boshkayev ◽  
Orlando Luongo ◽  
Marco Muccino ◽  
Hernando Quevedo

2021 ◽  
Vol 923 (2) ◽  
pp. 232
Author(s):  
Yi Ren ◽  
Biwei Jiang ◽  
Ming Yang ◽  
Tianding Wang ◽  
Tongtian Ren

Abstract This work establishes the most complete sample of red supergiants (RSGs) in 12 low-mass galaxies (WLM, IC 10, NGC 147, NGC 185, IC 1613, Leo A, Sextans B, Sextans A, NGC 6822, Pegasus Dwarf, SMC, and LMC) of the Local Group, which forms a solid basis to study the properties of RSGs as well as the star formation rate and initial mass function of the galaxies. After removing the foreground dwarf stars by their obvious branch in the near-infrared color–color diagram ( J − H 0 / H − K 0 ) with the UKIRT/WFCAM and 2MASS photometry as well as the Gaia/EDR3 measurements of proper motion and parallax, RSGs are identified from their location in the color–magnitude diagram J − K 0 / K 0 of the member stars of the specific galaxy. A total of 2190 RSGs are found in 10 dwarf galaxies, and additionally, 4823 and 2138 RSGs are found in LMC and SMC, respectively. The locations of the tip of the red giant branch in the J − K 0 / K 0 diagram are determined to serve as an indicator of the metallicity and distance modulus of the galaxies.


2021 ◽  
Vol 922 (2) ◽  
pp. 191
Author(s):  
O. Grace Telford ◽  
John Chisholm ◽  
Kristen B. W. McQuinn ◽  
Danielle A. Berg

Abstract Metal-poor massive stars dominate the light we observe from star-forming dwarf galaxies and may have produced the bulk of energetic photons that reionized the universe at high redshift. Yet, the rarity of observations of individual O stars below the 20% solar metallicity (Z ⊙) of the Small Magellanic Cloud (SMC) hampers our ability to model the ionizing fluxes of metal-poor stellar populations. We present new Hubble Space Telescope far-ultraviolet (FUV) spectra of three O-dwarf stars in the galaxies Leo P (3% Z ⊙), Sextans A (6% Z ⊙), and WLM (14% Z ⊙). We quantify equivalent widths of photospheric metal lines and strengths of wind-sensitive features, confirming that both correlate with metallicity. We infer the stars’ fundamental properties by modeling their FUV through near-infrared spectral energy distributions and identify stars in the SMC with similar properties to each of our targets. Comparing to the FUV spectra of the SMC analogs suggests that (1) the star in WLM has an SMC-like metallicity, and (2) the most metal-poor star in Leo P is driving a much weaker stellar wind than its SMC counterparts. We measure projected rotation speeds and find that the two most metal-poor stars have high v sin ( i ) ≥ 290 km s−1, and estimate just a 3%–6% probability of finding two fast rotators if the metal-poor stars are drawn from the same v sin ( i ) distribution observed for O dwarfs in the SMC. These observations suggest that models should include the impact of rotation and weak winds on ionizing flux to accurately interpret observations of metal-poor galaxies in both the near and distant universe.


Author(s):  
I. Karovicova ◽  
T. R. White ◽  
T. Nordlander ◽  
L. Casagrande ◽  
M. Ireland ◽  
...  

2021 ◽  
Vol 922 (1) ◽  
pp. 44
Author(s):  
Sean Jordan ◽  
Paul B. Rimmer ◽  
Oliver Shorttle ◽  
Tereza Constantinou

Abstract Compared to the diversity seen in exoplanets, Venus is a veritable astrophysical twin of the Earth; however, its global cloud layer truncates features in transmission spectroscopy, masking its non-Earth-like nature. Observational indicators that can distinguish an exo-Venus from an exo-Earth must therefore survive above the cloud layer. The above-cloud atmosphere is dominated by photochemistry, which depends on the spectrum of the host star and therefore changes between stellar systems. We explore the systematic changes in photochemistry above the clouds of Venus-like exoplanets orbiting K-dwarf or M-dwarf host stars, using a recently validated model of the full Venus atmosphere (0–115 km) and stellar spectra from the Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems (MUSCLES) Treasury survey. SO2, OCS, and H2S are key gas species in Venus-like planets that are not present in Earth-like planets, and could therefore act as observational discriminants if their atmospheric abundances are high enough to be detected. We find that SO2, OCS, and H2S all survive above the cloud layer when irradiated by the coolest K dwarf and all seven M dwarfs, whereas these species are heavily photochemically depleted above the clouds of Venus. The production of sulfuric acid molecules that form the cloud layer decreases for decreasing stellar effective temperature. Less steady-state photochemical oxygen and ozone forms with decreasing stellar effective temperature, and the effect of chlorine-catalyzed reaction cycles diminish in favor of HO x and SO x catalyzed cycles. We conclude that trace sulfur gases will be prime observational indicators of Venus-like exoplanets around M-dwarf host stars, potentially capable of distinguishing an exo-Venus from an exo-Earth.


2021 ◽  
Vol 922 (1) ◽  
pp. 2
Author(s):  
R. M. Duan ◽  
W. Zong ◽  
J.-N. Fu ◽  
Y. H. Chen ◽  
J. J. Hermes ◽  
...  

Abstract We present analysis of a new pulsating helium-atmosphere (DB) white dwarf, EPIC 228782059, discovered from 55.1 days of K2 photometry. The long-duration, high-quality light curves reveal 11 independent dipole and quadruple modes, from which we derive a rotational period of 34.1 ± 0.4 hr for the star. An optimal model is obtained from a series of grids constructed using the White Dwarf Evolution Code, which returns M * = 0.685 ± 0.003M ⊙, T eff = 21,910 ± 23 K, and log g = 8.14 ± 0.01 dex. These values are comparable to those derived from spectroscopy by Koester & Kepler (20,860 ± 160 K, and 7.94 ± 0.03 dex). If these values are confirmed or better constrained by other independent works, it would make EPIC 228782059 one of the coolest pulsating DB white dwarf stars known, and would be helpful for testing different physical treatments of convection, and to further investigate the theoretical instability strip of DB white dwarf stars.


2021 ◽  
Vol 162 (5) ◽  
pp. 188
Author(s):  
P. Bergeron ◽  
F. Wesemael ◽  
G. Fontaine ◽  
R. Lamontagne ◽  
S. Demers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document