scholarly journals STAR FORMATION HISTORY AND CHEMICAL EVOLUTION OF THE SEXTANS DWARF SPHEROIDAL GALAXY

2009 ◽  
Vol 703 (1) ◽  
pp. 692-701 ◽  
Author(s):  
Myung Gyoon Lee ◽  
In-Soo Yuk ◽  
Hong Soo Park ◽  
Jason Harris ◽  
Dennis Zaritsky
2004 ◽  
Vol 21 (2) ◽  
pp. 157-160
Author(s):  
Simone Recchi

AbstractWe study the effect of different star formation regimes on the dynamical and chemical evolution of IZw18, the most metal-poor dwarf galaxy locally known. To do that we adopt a two-dimensional hydrocode coupled with detailed chemical yields originating from Type II and Type Ia supernovae and from intermediate-mass stars. Particular emphasis is devoted to the problem of mixing of metals. We conclude that, under particular conditions, cooling of metals occurs with a timescale of the order of 10 Myr, thus confirming the hypothesis of instantaneous mixing adopted in chemical evolution models. We try to draw conclusions about the star formation history and the age of the last burst in IZw18.


1999 ◽  
Vol 190 ◽  
pp. 357-358 ◽  
Author(s):  
A. Ardeberg ◽  
P. Linde ◽  
B. Gustafsson

We study star formation history and chemical evolution in the LMC Bar centre. With the HST PC and WFC plus uvby photometry, we find 30% of the stars younger than 200 My and evidence for reduced star formation 3 to 0.2 Gy ago. The overall [Fe/H] is −0.5. Many stars older than 4 Gy contradict a very young Bar.


2006 ◽  
Vol 2 (S235) ◽  
pp. 313-313
Author(s):  
J. Yin ◽  
J.L. Hou ◽  
R.X. Chang ◽  
S. Boissier ◽  
N. Prantzos

Andromeda galaxy (M31,NGC224) is the biggest spiral in the Local Group. By studying the star formation history(SFH) and chemical evolution of M31, and comparing with the Milky Way Galaxy, we are able to understand more about the formation and evolution of spiral galaxies.


2009 ◽  
Vol 5 (S262) ◽  
pp. 291-294
Author(s):  
Myung Gyoon Lee ◽  
In-Soo Yuk ◽  
Sungsoon Lim

AbstractSMART is a model to derive both star formation history and chemical evolution simultaneously from color-magnitude diagrams of resolved stars in a galaxy. We present current progress and discuss the prospects of SMART for the next decade.


1999 ◽  
Vol 186 ◽  
pp. 202-202
Author(s):  
Yasuhiro Shioya ◽  
Kenji Bekki

We investigate the nature of stellar populations of major galaxy mergers between late-type spirals considerably abundant in interstellar medium by performing numerical simulations designed to solve both the dynamical and chemical evolution in a self-consistent manner. We particularly consider that the star formation history of galaxy mergers is a crucial determinant for the nature of stellar populations of merger remnants, and therefore investigate how the difference in star formation history between galaxy mergers affects the chemical evolution of galaxy mergers.


2019 ◽  
Vol 14 (S351) ◽  
pp. 302-304
Author(s):  
Sohee Jang ◽  
Jenny J. Kim ◽  
Young-Wook Lee

AbstractRecent investigations of multiple stellar populations in globular clusters (GCs) suggest that the horizontal-branch (HB) morphology and mean period of type ab RR Lyrae variables are mostly sensitive to helium abundance, while the star formation timescale has the greatest effect on our chemical evolution model constructed to reproduce the Na-O anti-correlation of GCs. Therefore, by combining the results from synthetic HB model with those from chemical evolution model, we could put better constraints on star formation history and chemical evolution in GCs with multiple populations. From such efforts made for four GCs, M4, M5, M15, and M80, we find that consistent results can be obtained from these two independent models.


2012 ◽  
Vol 754 (2) ◽  
pp. 144 ◽  
Author(s):  
J. P. Torres-Papaqui ◽  
R. Coziol ◽  
R. A. Ortega-Minakata ◽  
D. M. Neri-Larios

2005 ◽  
Vol 13 ◽  
pp. 566-571
Author(s):  
Varsha P. Kulkarni

AbstractDamped Lyman-alpha absorbers in quasar spectra provide a unique tool to directly measure the abundances of elements in galaxies at red-shifts 0 < z < 5, and hence probe the chemical evolution of galaxies over > 90% of the age of the Universe. Since cosmic chemical evolution models predict the global metallicity of galaxies to increase with time, it is of great interest to determine whether DLAs actually show such a trend. We discuss statistical analysis of existing DLA Zn data to examine the metallicity-redshift relation, and a comparison of the observed data with models of cosmic chemical evolution. We also describe efforts to expand the DLA abundance sample at z < 1.5, where the current data are particularly sparse. Finally, we discuss emission-line imaging studies of the absorber galaxies and compare constraints on their star formation rates with models based on the global star formation history.


Sign in / Sign up

Export Citation Format

Share Document