scholarly journals Stellar Populations in High-z Galaxy Mergers

1999 ◽  
Vol 186 ◽  
pp. 202-202
Author(s):  
Yasuhiro Shioya ◽  
Kenji Bekki

We investigate the nature of stellar populations of major galaxy mergers between late-type spirals considerably abundant in interstellar medium by performing numerical simulations designed to solve both the dynamical and chemical evolution in a self-consistent manner. We particularly consider that the star formation history of galaxy mergers is a crucial determinant for the nature of stellar populations of merger remnants, and therefore investigate how the difference in star formation history between galaxy mergers affects the chemical evolution of galaxy mergers.

2009 ◽  
Vol 5 (S262) ◽  
pp. 153-163
Author(s):  
Ivo Labbé

AbstractHow did galaxies evolve from primordial fluctuations to the well-ordered but diverse population of disk and elliptical galaxies that we observe today? Stellar populations synthesis models have become a crucial tool in addressing this question by helping us to interpret the spectral energy distributions of present-day galaxies and their high redshift progenitors in terms of fundamental characteristics such as stellar mass and age. I will review our current knowledge on the evolution of stellar populations in early- and late type galaxies at z < 1 and the tantalizing – but incomplete – view of the stellar populations in galaxies at 1 < z < 3, during the global peak of star formation. Despite great progress, many fundamental questions remain: what processes trigger episodes of galaxy-scale star formation and what quenches them? To what degree does the star formation history of galaxies depend on the merger history, (halo) mass, or local environment? I will discuss some of the challenges posed in interpreting current data and what improved results might be expected from new observational facilities in the near- and more distant future.


Nature ◽  
2004 ◽  
Vol 428 (6983) ◽  
pp. 625-627 ◽  
Author(s):  
Alan Heavens ◽  
Benjamin Panter ◽  
Raul Jimenez ◽  
James Dunlop

1984 ◽  
Vol 108 ◽  
pp. 107-114
Author(s):  
K. C. Freeman

Why are the kinematics and dynamics of the Magellanic Clouds worth studying ? Some of the reasons are: 1.The Clouds are the closest examples of Magellanic systems. These asymmetric systems give some interesting dynamical problems. Because the Clouds are so close, a unique amount of information can be obtained on the kinematics of objects of all ages. This should be very helpful for understanding the dynamics.2.The Clouds and the Galaxy are interacting. This produces complex kinematics of the gas in and between the Clouds, and also the Magellanic Stream. Again, very detailed information can be derived. We would like to know enough about the gas dynamics of interacting galaxies, to be able to explain the kinematics produced by this interaction.3.The interaction will affect the star formation and chemical evolution in the Clouds. As new results are obtained on the star formation history and the chemical evolution, it is important to follow in parallel the dynamical history of the system, to see if the dynamics, star formation and chemical evolution can be tied together.


2016 ◽  
Vol 830 (1) ◽  
pp. 3 ◽  
Author(s):  
E. Sacchi ◽  
F. Annibali ◽  
M. Cignoni ◽  
A. Aloisi ◽  
T. Sohn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document