scholarly journals HUNTING FOR ORPHANED CENTRAL COMPACT OBJECTS AMONG RADIO PULSARS

2015 ◽  
Vol 808 (2) ◽  
pp. 130 ◽  
Author(s):  
J. Luo ◽  
C.-Y. Ng ◽  
W. C. G. Ho ◽  
S. Bogdanov ◽  
V. M. Kaspi ◽  
...  
2017 ◽  
Vol 13 (S337) ◽  
pp. 3-8
Author(s):  
Victoria M. Kaspi

AbstractSince their discovery 50 years ago, neutron stars have continually astonished. From the first-discovered radio pulsars to the powerful “magnetars” that emit sudden bursts of X-rays and γ-rays, from the so-called Isolated Neutron Stars to Central Compact Objects, observational manifestations of neutron stars are surprisingly varied, with most properties totally unpredicted. The challenge is to cement an overarching physical theory of neutron stars and their birth properties that can explain this great diversity. Here I briefly survey the disparate neutron star classes, describe their properties, highlight recent results, and describe efforts at “grand unification” of this wealth of observational phenomena.


2021 ◽  
Vol 503 (2) ◽  
pp. 2973-2978
Author(s):  
G A Carvalho ◽  
S Pilling

ABSTRACT In this work, we analyse soft X-ray emission due to mass accretion on to compact stars and its effects on the time-scale to reach chemical equilibrium of eventual surrounding astrophysical ices exposed to that radiation. Reaction time-scales due to soft X-ray in water-rich and pure ices of methanol, acetone, acetonitrile, formic acid, and acetic acid were determined. For accretion rates in the range $\dot{m}=10^{-12}\!-\!10^{-8}\,{\rm M}_\odot$ yr−1 and distances in the range 1–3 LY from the central compact objects, the time-scales lie in the range 10–108 yr, with shorter time-scales corresponding to higher accretion rates. Obtained time-scales for ices at snow-line distances can be small when compared to the lifetime (or age) of the compact stars, showing that chemical equilibrium could have been achieved. Time-scales for ices to reach chemical equilibrium depend on X-ray flux and, hence, on accretion rate, which indicates that systems with low accretion rates may not have reached chemical equilibrium.


2012 ◽  
Vol 8 (S291) ◽  
pp. 101-106 ◽  
Author(s):  
Wynn C. G. Ho

AbstractCentral compact objects (CCOs) are neutron stars that are found near the center of supernova remnants, and their association with supernova remnants indicates these neutron stars are young (≲ 104 yr). Here we review the observational properties of CCOs and discuss implications, especially their inferred magnetic fields. X-ray timing and spectral measurements suggest CCOs have relatively weak surface magnetic fields (~ 1010 − 1011 G). We argue that, rather than being created with intrinsically weak fields, CCOs are born with strong fields and we are only seeing a weak surface field that is transitory and evolving. This could imply that CCOs are one manifestation in a unified picture of neutron stars.


2019 ◽  
Vol 489 (3) ◽  
pp. 4444-4463 ◽  
Author(s):  
C Braun ◽  
S Safi-Harb ◽  
C L Fryer

ABSTRACT We present a Chandra and XMM–Newton imaging and spectroscopic study of the supernova remnant (SNR) RCW 103 (G332.4−00.4) containing the central compact object 1E 161348−5055. The high-resolution Chandra X-ray images reveal enhanced emission in the south-eastern and north-western regions. Equivalent width line images of Fe L, Mg, Si, and S using XMM–Newton data were used to map the distribution of ejecta. The SNR was sectioned into 56 regions best characterized by two-component thermal models. The harder component (kT ∼ 0.6 keV) is adequately fitted by the VPSHOCK non-equilibrium ionization model with an ionization time-scale net ∼ 1011–1012 cm−3 s, and slightly enhanced abundances over solar values. The soft component (kT ∼ 0.2 keV), fitted by the APEC model, is well described by plasma in collisional ionization equilibrium with abundances consistent with solar values. Assuming a distance of 3.1 kpc and a Sedov phase of expansion into a uniform medium, we estimate an SNR age of 4.4 kyr, a swept-up mass Msw = 16$f_\mathrm{ s}^{-1/2}$ D$_{3.1}^{5/2}$ M⊙, and a low explosion energy E* = 3.7 × 1049 $f_\mathrm{ s}^{-1/2}$ D$_{3.1}^{5/2}$ erg. This energy could be an order of magnitude higher if we relax the Sedov assumption, the plasma has a low filling factor, the plasma temperature is underestimated, or if the SNR is expanding into the progenitor’s wind-blown bubble. Standard explosion models did not match the ejecta yields. By comparing the fitted abundances to the most recent core-collapse nucleosynthesis models, our best estimate yields a low-mass progenitor of around 12–13 M⊙, lower than previously reported. We discuss degeneracies in the model fitting, particularly the effect of altering the explosion energy on the progenitor mass estimate.


2012 ◽  
Vol 8 (S291) ◽  
pp. 382-384
Author(s):  
R. P. Eatough ◽  
M. Kramer ◽  
B. Klein ◽  
R. Karuppusamy ◽  
D. J. Champion ◽  
...  

AbstractRadio pulsars in relativistic binary systems are unique tools to study the curved space-time around massive compact objects. The discovery of a pulsar closely orbiting the super-massive black hole at the centre of our Galaxy, Sgr A⋆, would provide a superb test-bed for gravitational physics. To date, the absence of any radio pulsar discoveries within a few arc minutes of Sgr A⋆ has been explained by one principal factor: extreme scattering of radio waves caused by inhomogeneities in the ionized component of the interstellar medium in the central 100 pc around Sgr A⋆. Scattering, which causes temporal broadening of pulses, can only be mitigated by observing at higher frequencies. Here we describe recent searches of the Galactic centre region performed at a frequency of 18.95 GHz with the Effelsberg radio telescope.


2012 ◽  
Vol 8 (S290) ◽  
pp. 231-232
Author(s):  
Alexander F. Kholtygin ◽  
Andrei P. Igoshev

AbstractWe consider the evolution of the very young neutron stars (NS) with moderate and low magnetic field values around 1E8 G to know how large is the share of the these objects among the those attributed as the millisecond pulsars (MSP). To exclude the contamination of accreted NS and young NS with moderate magnetic fields we study the observational evidences of the accretion on NS in the binary systems and different methods of age determinations. It was concluded that only central compact objects are appropriate candidates for NSs with small initial magnetic fields.


2014 ◽  
Vol 573 ◽  
pp. A53 ◽  
Author(s):  
D. Klochkov ◽  
V. Suleimanov ◽  
G. Pühlhofer ◽  
D. G. Yakovlev ◽  
A. Santangelo ◽  
...  

2020 ◽  
Vol 495 (2) ◽  
pp. 1692-1699 ◽  
Author(s):  
Konstantinos N Gourgouliatos ◽  
Rainer Hollerbach ◽  
Andrei P Igoshev

ABSTRACT Central Compact Objects (CCOs) are X-ray sources with luminosity ranging between 1032 and 1034 erg s−1, located at the centres of supernova remnants. Some of them have been confirmed to be neutron stars. Timing observations have allowed the estimation of their dipole magnetic field, placing them in the range ∼1010–1011 G. The decay of their weak dipole fields, mediated by the Hall effect and Ohmic dissipation, cannot provide sufficient thermal energy to power their X-ray luminosity, as opposed to magnetars whose X-ray luminosities are comparable. Motivated by the question of producing high X-ray power through magnetic field decay while maintaining a weak dipole field, we explore the evolution of a crustal magnetic field that does not consist of an ordered axisymmetric structure, but rather comprises a tangled configuration. This can be the outcome of a non-self-excited dynamo, buried inside the crust by fallback material following the supernova explosion. We find that such initial conditions lead to the emergence of the magnetic field from the surface of the star and the formation of a dipolar magnetic field component. An internal tangled magnetic field of the order of 1014 G can provide sufficient Ohmic heating to the crust and power CCOs, while the dipole field it forms is approximately 1010 G, as observed in CCOs.


Sign in / Sign up

Export Citation Format

Share Document