scholarly journals Powering central compact objects with a tangled crustal magnetic field

2020 ◽  
Vol 495 (2) ◽  
pp. 1692-1699 ◽  
Author(s):  
Konstantinos N Gourgouliatos ◽  
Rainer Hollerbach ◽  
Andrei P Igoshev

ABSTRACT Central Compact Objects (CCOs) are X-ray sources with luminosity ranging between 1032 and 1034 erg s−1, located at the centres of supernova remnants. Some of them have been confirmed to be neutron stars. Timing observations have allowed the estimation of their dipole magnetic field, placing them in the range ∼1010–1011 G. The decay of their weak dipole fields, mediated by the Hall effect and Ohmic dissipation, cannot provide sufficient thermal energy to power their X-ray luminosity, as opposed to magnetars whose X-ray luminosities are comparable. Motivated by the question of producing high X-ray power through magnetic field decay while maintaining a weak dipole field, we explore the evolution of a crustal magnetic field that does not consist of an ordered axisymmetric structure, but rather comprises a tangled configuration. This can be the outcome of a non-self-excited dynamo, buried inside the crust by fallback material following the supernova explosion. We find that such initial conditions lead to the emergence of the magnetic field from the surface of the star and the formation of a dipolar magnetic field component. An internal tangled magnetic field of the order of 1014 G can provide sufficient Ohmic heating to the crust and power CCOs, while the dipole field it forms is approximately 1010 G, as observed in CCOs.

2012 ◽  
Vol 8 (S291) ◽  
pp. 101-106 ◽  
Author(s):  
Wynn C. G. Ho

AbstractCentral compact objects (CCOs) are neutron stars that are found near the center of supernova remnants, and their association with supernova remnants indicates these neutron stars are young (≲ 104 yr). Here we review the observational properties of CCOs and discuss implications, especially their inferred magnetic fields. X-ray timing and spectral measurements suggest CCOs have relatively weak surface magnetic fields (~ 1010 − 1011 G). We argue that, rather than being created with intrinsically weak fields, CCOs are born with strong fields and we are only seeing a weak surface field that is transitory and evolving. This could imply that CCOs are one manifestation in a unified picture of neutron stars.


2004 ◽  
Vol 218 ◽  
pp. 239-246 ◽  
Author(s):  
George G. Pavlov ◽  
Divas Sanwal ◽  
Marcus A. Teter

There are point-like sources in central regions of several supernova remnants which have not been detected outside the X-ray range. The X-ray spectra of these Central Compact Objects (CCOs) have thermal components with blackbody temperatures of 0.2–0.5 keV and characteristic sizes of 0.3-3 km. Most likely, the CCOs are neutron stars born in supernova explosions. We overview their observational properties, emphasizing the Chandra data, and compare them with magnetars.


2012 ◽  
Vol 8 (S291) ◽  
pp. 489-491
Author(s):  
K. A. Seo ◽  
C. Y. Hui ◽  
R. H. H. Huang ◽  
L. Trepl ◽  
T.-N. Lu ◽  
...  

AbstractWe present a short Chandra observation that confirms a previous unidentified extended X-ray source, G308.3-1.4, as a new supernova remnant (SNR) in the Milky Way. Apart from identifying its SNR nature, a bright X-ray point source has also been discovered at the geometrical center. Its X-ray spectral properties are similar to those of a particular class of neutron star known as central compact objects (CCOs). On the other hand, the optical properties of this counterpart suggests it to be a late-type star. Together with the interesting ~ 1.4 hours X-ray periodicity found by Chandra, this system can possibly provide the first direct evidence of a compact binary survived in a supernova explosion.


2004 ◽  
Vol 218 ◽  
pp. 277-278 ◽  
Author(s):  
Estela M. Reynoso ◽  
Simon Johnston ◽  
Anne J. Green ◽  
W. M. Goss ◽  
Gloria M. Dubner ◽  
...  

We have carried out an H I survey towards X-ray central compact objects (CCOs) inside supernova remnants (SNRs), which shows that many of them are placed within local H I minimA. The nature of these minima is not clear, but the most likely explanation is that the CCOs have evacuated the neighboring gas. This survey also allowed us to detect a weak, diffuse radio nebula inside the SNR G266.2−1.2, probably created by the winds of its associated CCO.


2000 ◽  
Vol 177 ◽  
pp. 699-702 ◽  
Author(s):  
E. V. Gotthelf ◽  
G. Vasisht

AbstractWe propose a simple explanation for the apparent dearth of radio pulsars associated with young supernova remnants (SNRs). Recent X-ray observations of young remnants have revealed slowly rotating (P∼ 10s) central pulsars with pulsed emission above 2 keV, lacking in detectable radio emission. Some of these objects apparently have enormous magnetic fields, evolving in a manner distinct from the Crab pulsar. We argue that these X-ray pulsars can account for a substantial fraction of the long sought after neutron stars in SNRs and that Crab-like pulsars are perhaps the rarer, but more highly visible example of these stellar embers. Magnetic field decay likely accounts for their high X-ray luminosity, which cannot be explained as rotational energy loss, as for the Crab-like pulsars. We suggest that the natal magnetic field strength of these objects control their subsequent evolution. There are currently almost a dozen slow X-ray pulsars associated with young SNRs. Remarkably, these objects, taken together, represent at least half of the confirmed pulsars in supernova remnants. This being the case, these pulsars must be the progenitors of a vast population of previously unrecognized neutron stars.


2021 ◽  
Vol 503 (2) ◽  
pp. 2973-2978
Author(s):  
G A Carvalho ◽  
S Pilling

ABSTRACT In this work, we analyse soft X-ray emission due to mass accretion on to compact stars and its effects on the time-scale to reach chemical equilibrium of eventual surrounding astrophysical ices exposed to that radiation. Reaction time-scales due to soft X-ray in water-rich and pure ices of methanol, acetone, acetonitrile, formic acid, and acetic acid were determined. For accretion rates in the range $\dot{m}=10^{-12}\!-\!10^{-8}\,{\rm M}_\odot$ yr−1 and distances in the range 1–3 LY from the central compact objects, the time-scales lie in the range 10–108 yr, with shorter time-scales corresponding to higher accretion rates. Obtained time-scales for ices at snow-line distances can be small when compared to the lifetime (or age) of the compact stars, showing that chemical equilibrium could have been achieved. Time-scales for ices to reach chemical equilibrium depend on X-ray flux and, hence, on accretion rate, which indicates that systems with low accretion rates may not have reached chemical equilibrium.


2019 ◽  
Vol 489 (3) ◽  
pp. 4444-4463 ◽  
Author(s):  
C Braun ◽  
S Safi-Harb ◽  
C L Fryer

ABSTRACT We present a Chandra and XMM–Newton imaging and spectroscopic study of the supernova remnant (SNR) RCW 103 (G332.4−00.4) containing the central compact object 1E 161348−5055. The high-resolution Chandra X-ray images reveal enhanced emission in the south-eastern and north-western regions. Equivalent width line images of Fe L, Mg, Si, and S using XMM–Newton data were used to map the distribution of ejecta. The SNR was sectioned into 56 regions best characterized by two-component thermal models. The harder component (kT ∼ 0.6 keV) is adequately fitted by the VPSHOCK non-equilibrium ionization model with an ionization time-scale net ∼ 1011–1012 cm−3 s, and slightly enhanced abundances over solar values. The soft component (kT ∼ 0.2 keV), fitted by the APEC model, is well described by plasma in collisional ionization equilibrium with abundances consistent with solar values. Assuming a distance of 3.1 kpc and a Sedov phase of expansion into a uniform medium, we estimate an SNR age of 4.4 kyr, a swept-up mass Msw = 16$f_\mathrm{ s}^{-1/2}$ D$_{3.1}^{5/2}$ M⊙, and a low explosion energy E* = 3.7 × 1049 $f_\mathrm{ s}^{-1/2}$ D$_{3.1}^{5/2}$ erg. This energy could be an order of magnitude higher if we relax the Sedov assumption, the plasma has a low filling factor, the plasma temperature is underestimated, or if the SNR is expanding into the progenitor’s wind-blown bubble. Standard explosion models did not match the ejecta yields. By comparing the fitted abundances to the most recent core-collapse nucleosynthesis models, our best estimate yields a low-mass progenitor of around 12–13 M⊙, lower than previously reported. We discuss degeneracies in the model fitting, particularly the effect of altering the explosion energy on the progenitor mass estimate.


Sign in / Sign up

Export Citation Format

Share Document