evolutionary fate
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 16)

H-INDEX

19
(FIVE YEARS 1)

Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1736
Author(s):  
Naveed Ur Rehman ◽  
Peichun Zeng ◽  
Zulong Mo ◽  
Shaoying Guo ◽  
Yunfeng Liu ◽  
...  

Autophagy is a highly conserved degradation mechanism in eukaryotes, executing the breakdown of unwanted cell components and subsequent recycling of cellular material for stress relief through vacuole-dependence in plants and yeast while it is lysosome-dependent in animal manner. Upon stress, different types of autophagy are stimulated to operate certain biological processes by employing specific selective autophagy receptors (SARs), which hijack the cargo proteins or organelles to the autophagy machinery for subsequent destruction in the vacuole/lysosome. Despite recent advances in autophagy, the conserved and diversified mechanism of autophagy in response to various stresses between plants and animals still remain a mystery. In this review, we intend to summarize and discuss the characterization of the SARs and their corresponding processes, expectantly advancing the scope and perspective of the evolutionary fate of autophagy between plants and animals.


Author(s):  
Gabor L. Igloi

AbstractDuring the endosymbiotic evolution of mitochondria, the genes for aminoacyl-tRNA synthetases were transferred to the ancestral nucleus. A further reduction of mitochondrial function resulted in mitochondrion-related organisms (MRO) with a loss of the organelle genome. The fate of the now redundant ancestral mitochondrial aminoacyl-tRNA synthetase genes is uncertain. The derived protein sequence for arginyl-tRNA synthetase from thirty mitosomal organisms have been classified as originating from the ancestral nuclear or mitochondrial gene and compared to the identity element at position 20 of the cognate tRNA that distinguishes the two enzyme forms. The evolutionary choice between loss and retention of the ancestral mitochondrial gene for arginyl-tRNA synthetase reflects the coevolution of arginyl-tRNA synthetase and tRNA identity elements.


2021 ◽  
pp. 140-152
Author(s):  
Iryna Dotsenko

The review is devoted to the analysis of literature sources considering the concepts of "species" and its criteria, "speciation", "reticulate evolution" and "Darwinian evolution", "divergence", "hybridization", and "parthenogenesis". The evolutionary fate and place of parthenogenetic organisms (in particular, among vertebrates) in the general evolutionary flow are considered. The reasons for the predominance of bisexual reproduction despite the obvious energetic and quantitative benefits of parthenogenesis are analysed. The applicability of the term "species" to parthenogenetic organisms is considered, considering their discrepancy with the main (genetic and reproductive) species criteria according to most concepts.


2021 ◽  
Author(s):  
Sabina Moser Tralamazza ◽  
Leen Nachira Abraham ◽  
Benedito Correa ◽  
Daniel Croll

Epigenetic modifications are key regulators of gene expression and underpin genome integrity. Yet, how epigenetic changes affect the evolution and transcriptional robustness of genes remains largely unknown. Here, we show how the repressive histone mark H3K27me3 influences the trajectory of highly conserved genes in fungi. We first performed transcriptomic profiling on closely related species of the plant pathogen Fusarium graminearum species complex. We determined transcriptional responsiveness of genes across environmental conditions to determine expression robustness. To infer evolutionary conservation of coding sequences, we used a comparative genomics framework of 23 species across the Fusarium genus. We integrated histone methylation data from three Fusarium species across the phylogenetic breadth of the genus. Gene expression variation is negatively correlated with gene conservation confirming that highly conserved genes show higher expression robustness. Furthermore, we show that highly conserved genes marked by H3K27me3 deviate from the typical housekeeping gene archetype. Compared to the genomic background, H3K27me3 marked genes encode smaller proteins, exhibit lower GC content, weaker codon usage bias, higher levels of hydrophobicity and are enriched for functions related to regulation and membrane transport. The evolutionary age of conserved genes with H3K27me3 histone marks falls typically within the origins of the Fusarium genus. We show that highly conserved genes marked by H3K27me3 are more likely to be dispensable for survival. Lastly, we show that conserved genes exposed to repressive H3K27me3 marks across distantly related fungi predict transcriptional perturbation at the microevolutionary scale in Fusarium fungi. In conclusion, we establish how repressive histone marks determine the evolutionary fate of highly conserved genes across evolutionary timescales.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aldanah A. Alqahtani ◽  
Robert K. Jansen

AbstractGene transfers from mitochondria and plastids to the nucleus are an important process in the evolution of the eukaryotic cell. Plastid (pt) gene losses have been documented in multiple angiosperm lineages and are often associated with functional transfers to the nucleus or substitutions by duplicated nuclear genes targeted to both the plastid and mitochondrion. The plastid genome sequence of Euphorbia schimperi was assembled and three major genomic changes were detected, the complete loss of rpl32 and pseudogenization of rps16 and infA. The nuclear transcriptome of E. schimperi was sequenced to investigate the transfer/substitution of the rpl32 and rps16 genes to the nucleus. Transfer of plastid-encoded rpl32 to the nucleus was identified previously in three families of Malpighiales, Rhizophoraceae, Salicaceae and Passifloraceae. An E. schimperi transcript of pt SOD-1-RPL32 confirmed that the transfer in Euphorbiaceae is similar to other Malpighiales indicating that it occurred early in the divergence of the order. Ribosomal protein S16 (rps16) is encoded in the plastome in most angiosperms but not in Salicaceae and Passifloraceae. Substitution of the E. schimperi pt rps16 was likely due to a duplication of nuclear-encoded mitochondrial-targeted rps16 resulting in copies dually targeted to the mitochondrion and plastid. Sequences of RPS16-1 and RPS16-2 in the three families of Malpighiales (Salicaceae, Passifloraceae and Euphorbiaceae) have high sequence identity suggesting that the substitution event dates to the early divergence within Malpighiales.


2021 ◽  
Author(s):  
Aldanah Alqahtani ◽  
Robert Jansen

Abstract Gene transfers from mitochondria and plastids to the nucleus are an important process in the evolution of the eukaryotic cell. Plastid (pt) gene losses have been documented in multiple angiosperm lineages and are often associated with functional transfers to the nucleus or substitutions by duplicated nuclear genes targeted to both the plastid and mitochondrion. The plastid genome sequence of Euphorbia schimperi was completed and losses of rpl32, rps16 and infA genes were detected. The nuclear transcriptome of E. schimperi was sequenced to investigate the transfer/substitution of the rpl32 and rps16 genes to the nucleus. Transfer of plastid-encoded rpl32 to the nucleus was identified previously in three families of Malpighiales, Rhizophoraceae, Salicaceae and Passifloraceae. An E. schimperi transcript of pt SOD-1-RPL32 confirmed that the transfer in Euphorbiaceae is similar to other Malpighiales indicating that it occurred early in the divergence of the order. Ribosomal protein S16 (rps16) is encoded in the plastome in most angiosperms but not in Salicaceae and Passifloraceae. Substitution of the E. schimperi pt rps16 was likely due to a duplication of nuclear-encoded mitochondrial-targeted rps16 resulting in copies dually targeted to the mitochondrion and plastid. Sequences of RPS16-1 and RPS16-2 in the three families of Malpighiales (Salicaceae, Passifloraceae and Euphorbiaceae) have high sequence identity suggesting that the substitution event dates to the early divergence of Malpighiales.


2020 ◽  
pp. 1-23
Author(s):  
JONATHAN CHAPPELL

Abstract This article explores the changing historical referents that Qing officials used in arguing for the extension of direct governance to the empire's frontier regions from the 1870s to the 1900s. In the 1870s, Shen Baozhen and Zuo Zongtang made the case for a change of governance on Taiwan and in Xinjiang respectively by reference to past Chinese frontier management. However, in the first decade of the twentieth century Cen Chunxuan and Yao Xiguang both referred to the European past, and specifically the history of European colonialism, to argue for reform of frontier policy in Mongolia. I argue that this shift was a result of both the empire's altered political circumstances and a growing belief in the inevitability of an evolutionary fate which awaited nomadic peoples, who were destined to be colonized. Yet this was not a case of Chinese thinkers simply adopting European ideas and perspectives wholesale. The adoption of European historical referents was entangled with Han Chinese perceptions of Mongolian populations which had been carefully cultivated by the Manchu Qing state.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Rama Bhatia ◽  
Hande Kirit ◽  
Jonathan Bollback

The evolutionary fate of a horizontal gene transfer (HGT) event is determined by its fitness on the recipient cell, i.e., whether it is beneficial, neutral or deleterious. The distribution of fitness effects (DFE), thus is a fundamental predictor of the outcome of an HGT event. The environment plays a considerable role in determining the fitness cost of a horizontally transferred gene. We have studied the fitness effects of genes transferred from Salmonella enterica serovar Typhimurium to Escherichia coli in six environments, that potentially represent the conditions experienced by the two species. The data suggests high variability of genes in different environments. Genes, whose fitness varies substantially between environments, may be able to persist in populations while being deleterious in one environment, they may be neutral or even beneficial in another environment, suggesting that environmental fluctuations may increase the likelihood of HGT. In addition to the in vitro environments, we are also looking at, how changes in the intrinsic environment of a cell, after an HGT event, could affect fitness. An increase in protein dosage due to functional similarity of the horizontally transferred gene to the endogenous gene can cause an imbalance in the cell, thereby leading to a negative fitness effect. By comparing the growth rates of each ortholog gene with the wild type strain, we can elucidate when gene dosage acts as a barrier to HGT.


Sign in / Sign up

Export Citation Format

Share Document