The theory of the ordinary Hall coefficient of iron at low temperatures

1968 ◽  
Vol 1 (4) ◽  
pp. 1052-1064 ◽  
Author(s):  
M G Cottam ◽  
R B Stinchcombe
2002 ◽  
Vol 16 (20n22) ◽  
pp. 3171-3174
Author(s):  
F. F. BALAKIREV ◽  
J. B. BETTS ◽  
G. S. BOEBINGER ◽  
S. ONO ◽  
Y. ANDO ◽  
...  

We report low-temperature Hall coefficient in the normal state of the high-Tc superconductor Bi 2 Sr 2-x La x CuO 6+δ. The Hall coefficient was measured down to 0.5 K by suppressing superconductivity with a 60 T pulsed magnetic field. The carrier concentration was varied from overdoped to underdoped regimes by partially substituting Sr with La in a set of five samples. The observed saturation of the Hall coefficient at low temperatures suggests the ability to extract the carrier concentration of each sample. The most underdoped sample exhibits a diverging Hall coefficient at low temperatures, consistent with a depletion of carriers in the insulating ground state. The Hall number exhibits a sharp peak providing additional support for the existence of a phase boundary at the optimal doping.


General expressions are obtained for the Hall coefficient and transverse magneto-resistance effect in polar semi-conductors, and the variation of these effects with temperature, magnetic field strength and degeneracy of the electrons is discussed. At low temperatures the magneto-resistance effect may become very large, contrary to the prediction of the freepath theory.


1964 ◽  
Vol 42 (3) ◽  
pp. 519-525 ◽  
Author(s):  
W. B. Pearson

The electrical conductivity and absolute thermoelectric power of AuSb2 and Cu2Sb have been measured between 2.5° and 300 °K. Room-temperature Hall coefficients were also determined. Iron impurity causes a giant diffusion thermoelectric power at low temperatures in the compound Cu2Sb, as it has previously been found to do in Cu, Ag, and Au.


1991 ◽  
Vol 43 (4) ◽  
pp. 3020-3025 ◽  
Author(s):  
Z. Z. Wang ◽  
T. R. Chien ◽  
N. P. Ong ◽  
J. M. Tarascon ◽  
E. Wang

2019 ◽  
Vol 963 ◽  
pp. 324-327 ◽  
Author(s):  
Hideharu Matsuura ◽  
Rinya Nishihata ◽  
Akinobu Takeshita ◽  
Tatsuya Imamura ◽  
Kota Takano ◽  
...  

The temperature dependencies of the resistivity and Hall coefficient for heavily Al-doped 4H-SiC epilayers with Al concentration (CAl) higher than 2×1019 cm-3 were investigated. The signs of measured Hall coefficients (RH) change from positive to negative at low temperatures. For the epilayers with CAl < 3×1019 cm-3 the sign inversion occurred in the hopping conduction region, which was reported to be explicable using the model for amorphous semiconductors. For the epilayers with CAl > 3×1019 cm-3, on the other hand, the sign inversion occurred in the band conduction region, which is a striking feature, because the movement of free holes in the valence band should make RH positive. The sign-inversion temperature increased with increasing CAl, while the dominant-conduction-mechanism-change temperature was almost independent of CAl.


Sign in / Sign up

Export Citation Format

Share Document