Continuity equations for bound electromagnetic field and the electromagnetic energy–momentum tensor

2011 ◽  
Vol 83 (5) ◽  
pp. 055406 ◽  
Author(s):  
A L Kholmetskii ◽  
O V Missevitch ◽  
T Yarman
1999 ◽  
Vol 08 (02) ◽  
pp. 141-151 ◽  
Author(s):  
V. C. DE ANDRADE ◽  
J. G. PEREIRA

In the framework of the teleparallel equivalent of general relativity, we study the dynamics of a gravitationally coupled electromagnetic field. It is shown that the electromagnetic field is able not only to couple to torsion, but also, through its energy–momentum tensor, produce torsion. Furthermore, it is shown that the coupling of the electromagnetic field with torsion preserves the local gauge invariance of Maxwell's theory.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter presents Maxwell equations determining the electromagnetic field created by an ensemble of charges. It also derives these equations from the variational principle. The chapter studies the equation’s invariances: gauge invariance and invariance under Poincaré transformations. These allow us to derive the conservation laws for the total charge of the system and also for the system energy, momentum, and angular momentum. To begin, the chapter introduces the first group of Maxwell equations: Gauss’s law of magnetism, and Faraday’s law of induction. It then discusses current and charge conservation, a second set of Maxwell equations, and finally the field–energy momentum tensor.


1980 ◽  
Vol 58 (8) ◽  
pp. 1163-1170 ◽  
Author(s):  
Gérard A. Maugin

Arguments recently proposed by Kranyš concerning the nondistinguishability between Abraham's and Minkowski's electromagnetic contributions to the total energy-momentum tensor of the same relativistic, thermodynamically closed system are extended to other electromagnetic energy-momentum tensors (as proposed by Grot and Eringen and de Groot and Suttorp). The adjustment of the corresponding "matter" contribution, which occurs in each element of the canonical space-time decomposition of the total energy-momentum tensor, is exhibited in those different cases. For dissipation-free systems this adjustment can be achieved for each case by means of an ad hoc Legendre transformation on the internal energy density. The arguments used do not presuppose any isotropy and linearity of the medium and can be readily extended to the cases of media with hysteresis and media endowed with intrinsic spins, be they of a fluid-like or solid-like type of mechanical behavior.


1977 ◽  
Vol 16 (6) ◽  
pp. 1691-1701 ◽  
Author(s):  
G. W. Horndeski ◽  
J. Wainwright

Sign in / Sign up

Export Citation Format

Share Document