Coordinate conditions and Einstein field equations with electromagnetic energy-momentum tensor

Author(s):  
Karl De Paepe
2003 ◽  
Vol 12 (06) ◽  
pp. 1095-1112 ◽  
Author(s):  
METIN ARIK ◽  
OZGUR DELICE

We present cylindrically symmetric, static solutions of the Einstein field equations around a line singularity such that the energy momentum tensor corresponds to infinitely thin photonic shells. Positivity of the energy density of the thin shell and the line singularity is discussed. It is also shown that thick shells containing mostly radiation are possible in a numerical solution.


2017 ◽  
Vol 14 (04) ◽  
pp. 1750053 ◽  
Author(s):  
Saeed Nayeh ◽  
Mehrdad Ghominejad

In this paper, we obtain the field equations of Weyl static axially symmetric space-time in the framework of [Formula: see text] gravity, where [Formula: see text] is torsion scalar. We will see that, for [Formula: see text] related to teleparallel equivalent general relativity, these equations reduce to Einstein field equations. We show that if the components of energy–momentum tensor are symmetric, the scalar torsion must be either constant or only a function of radial component [Formula: see text]. The solutions of some functions [Formula: see text] in which [Formula: see text] is a function of [Formula: see text] are obtained.


2019 ◽  
Vol 16 (05) ◽  
pp. 1950071
Author(s):  
Irene Brito

The problem of generating solutions of the Einstein field equations with an elastic energy–momentum tensor from the Schwarzschild vacuum solution by means of conformal transformations is analyzed. Applying the formulation of relativistic elasticity, suitable conformal factors are obtained for static and non-static elastic spacetime configurations and particular solutions are presented. This work shows that the technique used here permits generating new elastic matter solutions from a vacuum spacetime.


2005 ◽  
Vol 20 (18) ◽  
pp. 4309-4330 ◽  
Author(s):  
M. SHARIF ◽  
TASNIM FATIMA

This paper is aimed to elaborate the problem of energy–momentum in general relativity. In this connection, we use the prescriptions of Einstein, Landau–Lifshitz, Papapetrou and Möller to compute the energy–momentum densities for two exact solutions of Einstein field equations. The space–times under consideration are the nonnull Einstein–Maxwell solutions and the singularity-free cosmological model. The electromagnetic generalization of the Gödel solution and the Gödel metric become special cases of the nonnull Einstein–Maxwell solutions. It turns out that these prescriptions do not provide consistent results for any of these space–times. These inconsistent results verify the well-known proposal that the idea of localization does not follow the lines of pseudotensorial construction but instead follows from the energy–momentum tensor itself. These differences can also be understood with the help of the Hamiltonian approach.


2016 ◽  
Vol 2016 ◽  
pp. 1-15
Author(s):  
Aurel Bejancu ◽  
Hani Reda Farran

Based on general (1+3) threading of the spacetime (M,g), we obtain a new and simple splitting of both the Einstein field equations (EFE) and the conservation laws in (M,g). As an application, we obtain the splitting of EFE in an almost FLRW universe with energy-momentum tensor of a perfect fluid. In particular, we state the perturbation Friedmann equations in an almost FLRW universe.


1953 ◽  
Vol 5 ◽  
pp. 17-25 ◽  
Author(s):  
L. Infeld

The problem of the field equations and the equations of motion in general relativity theory is now sufficiently clarified. The equations of motion can be deduced from pure field equations by treating matter as singularities, [2; 3], or from field equations with the energy momentum tensor [4]. Recently two papers appeared in which the problem of the coordinate system was considered [5; 8]. The two papers are in general agreement as far as the role of the coordinate system is concerned. Yet there are some differences which require clarification.


2019 ◽  
Vol 34 (22) ◽  
pp. 1950119 ◽  
Author(s):  
Salih Kibaroğlu

In this study, the effects of the generalized uncertainty principle on the theory of gravity are analyzed. Inspired by Verlinde’s entropic gravity approach and using the modified Unruh temperature, the generalized Einstein field equations with cosmological constant are obtained and corresponding conservation law is investigated. The resulting conservation law of energy–momentum tensor dictates that the generalized Einstein field equations are valid in a very limited range of accelerations. Moreover, the modified Newton’s law of gravity and the modified Poisson equation are derived. In a certain limit, these modified equations reduce to their standard forms.


2010 ◽  
Vol 25 (19) ◽  
pp. 1635-1646 ◽  
Author(s):  
F. DARABI

In the framework of Kaluza–Klein theory, we investigate a (4+1)-dimensional universe consisting of a (4+1)-dimensional Robertson–Walker type metric coupled with a (4+1)-dimensional energy–momentum tensor. The matter part consists of an energy density together with a pressure subject to 4D part of the (4+1)-dimensional energy–momentum tensor. The dark part consists of just a dark pressure [Formula: see text], corresponding to the extra-dimension endowed by a scalar field, with no element of dark energy. It is shown that the reduced Einstein field equations are free of 4D pressure and are just affected by an effective pressure produced by the 4D energy density and dark pressure. It is then proposed that the expansion of the universe may be controlled by the equation of state in higher dimension rather than four dimensions. This may account for the current acceleration at the beginning or in the middle of matter dominant era.


Author(s):  
D. W. Sciama

ABSTRACTIt is suggested, on heuristic grounds, that the energy-momentum tensor of a material field with non-zero spin and non-zero rest-mass should be non-symmetric. The usual relationship between energy-momentum tensor and gravitational potential then implies that the latter should also be a non-symmetric tensor. This suggestion has nothing to do with unified field theory; it is concerned with the pure gravitational field.A theory of gravitation based on a non-symmetric potential is developed. Field equations are derived, and a study is made of Rosenfeld identities, Bianchi identities, angular momentum and the equations of motion of test particles. These latter equations represent the geodesics of a Riemannian space whose contravariant metric tensor is gij–, in agreement with a result of Lichnerowicz(9) on the bicharacteristics of the Einstein–Schrödinger field equations.


Author(s):  
Anirudh Pradhan ◽  
Priyanka Garg ◽  
Archana Dixit

In the present paper, we have generalized the behaviors of {\color{blue}transit-decelerating to accelerating} FRW cosmological model in f (R, T) gravity theory, where R, T are Ricci scalar and trace of energy-momentum tensor respectively. The solution of the corresponding field equations is obtained by assuming a linear function of the Hubble parameter H, i.e., q = c<sub>1</sub> + c<sub>2</sub>H which gives a time-dependent DP (deceleration parameter) q(t)=-1+\frac{c_2}{\sqrt{2c_2 t +c_3}}, where c<sub>3</sub> and c<sub>2</sub> are arbitrary integrating constants [Tiwari et al., Eur. Phys. J. Plus: 131, 447 (2016); 132, 126 (2017)]. There are two scenarios in which we explain the particular form of scale factor thus obtained  (i) By using the recent constraints from OHD and JLA data which shows a cosmic deceleration to acceleration and (ii) By using new constraints from supernovae type la union data which shows accelerating expansion universe (q<0) throughout the evolution. We have observed that the EoS parameter, energy density parameters, and important cosmological planes yield the results compatible with the modern observational data. For the derived models, we have calculated various physical parameters as Luminosity distance, Distance modulus, and Apparent magnitude versus redshift for both supporting current observations.


Sign in / Sign up

Export Citation Format

Share Document