scholarly journals Motion management within two respiratory-gating windows: feasibility study of dual quasi-breath-hold technique in gated medical procedures

2014 ◽  
Vol 59 (21) ◽  
pp. 6583-6594 ◽  
Author(s):  
Taeho Kim ◽  
Siyong Kim ◽  
Yang-Kyun Park ◽  
Kaylin K Youn ◽  
Paul Keall ◽  
...  
Author(s):  
M J Keikhai Farzaneh ◽  
M Momennezhad ◽  
Sh Naseri

One of the most important challenges in treatment of patients with cancerous tumors of chest and abdominal areas is organ movement. The delivery of treatment radiation doses to tumor tissue is a challenging matter while protecting healthy and radio sensitive tissues. Since the movement of organs due to respiration causes a discrepancy in the middle of planned and delivered dose distributions. The moderation in the fatalistic effect of intra-fractional target travel on the radiation therapy correctness is necessary for cutting-edge methods of motion remote monitoring and cancerous growth irradiancy. Tracking respiratory milling and implementation of breath-hold techniques by respiratory gating systems have been used for compensation of respiratory motion negative effects. Therefore, these systems help us to deliver precise treatments and also protect healthy and critical organs. It seems aspiration should be kept under observation all over treatment period employing tracking seed markers (e.g. fiducials), skin surface scanners (e.g. camera and laser monitoring systems) and aspiration detectors (e.g. spirometers). However, these systems are not readily available for most radiotherapy centers around the word. It is believed that providing and expanding the required equipment, gated radiotherapy will be a routine technique for treatment of chest and abdominal tumors in all clinical radiotherapy centers in the world by considering benefits of respiratory gating techniques in increasing efficiency of patient treatment in the near future.This review explains the different technologies and systems as well as some strategies available for motion management in radiotherapy centers.


2021 ◽  
Vol 161 ◽  
pp. S1488-S1489
Author(s):  
V. Maradia ◽  
S. Bertschi ◽  
M. Krieger ◽  
S. van de Water ◽  
D. Meer ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
P. Freislederer ◽  
M. Kügele ◽  
M. Öllers ◽  
A. Swinnen ◽  
T.-O. Sauer ◽  
...  

Abstract The growing acceptance and recognition of Surface Guided Radiation Therapy (SGRT) as a promising imaging technique has supported its recent spread in a large number of radiation oncology facilities. Although this technology is not new, many aspects of it have only recently been exploited. This review focuses on the latest SGRT developments, both in the field of general clinical applications and special techniques. SGRT has a wide range of applications, including patient positioning with real-time feedback, patient monitoring throughout the treatment fraction, and motion management (as beam-gating in free-breathing or deep-inspiration breath-hold). Special radiotherapy modalities such as accelerated partial breast irradiation, particle radiotherapy, and pediatrics are the most recent SGRT developments. The fact that SGRT is nowadays used at various body sites has resulted in the need to adapt SGRT workflows to each body site. Current SGRT applications range from traditional breast irradiation, to thoracic, abdominal, or pelvic tumor sites, and include intracranial localizations. Following the latest SGRT applications and their specifications/requirements, a stricter quality assurance program needs to be ensured. Recent publications highlight the need to adapt quality assurance to the radiotherapy equipment type, SGRT technology, anatomic treatment sites, and clinical workflows, which results in a complex and extensive set of tests. Moreover, this review gives an outlook on the leading research trends. In particular, the potential to use deformable surfaces as motion surrogates, to use SGRT to detect anatomical variations along the treatment course, and to help in the establishment of personalized patient treatment (optimized margins and motion management strategies) are increasingly important research topics. SGRT is also emerging in the field of patient safety and integrates measures to reduce common radiotherapeutic risk events (e.g. facial and treatment accessories recognition). This review covers the latest clinical practices of SGRT and provides an outlook on potential applications of this imaging technique. It is intended to provide guidance for new users during the implementation, while triggering experienced users to further explore SGRT applications.


2011 ◽  
Vol 38 (6Part1) ◽  
pp. 3114-3124 ◽  
Author(s):  
Yang-Kyun Park ◽  
Siyong Kim ◽  
Hwiyoung Kim ◽  
II Han Kim ◽  
Kunwoo Lee ◽  
...  

2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Pascale Aouad ◽  
Ioannis Koktzoglou ◽  
Bastien Milani ◽  
Ali Serhal ◽  
Jose Nazari ◽  
...  

Abstract Background Computed tomography angiography (CTA) or contrast-enhanced (CE) cardiovascular magnetic resonance angiography (CMRA) is often obtained in patients with atrial fibrillation undergoing evaluation prior to pulmonary vein (PV) isolation. Drawbacks of CTA include radiation exposure and potential risks from iodinated contrast agent administration. Free-breathing 3D balanced steady-state free precession (bSSFP) Non-contrast CMRA is a potential imaging option, but vascular detail can be suboptimal due to ghost artifacts and blurring that tend to occur with a Cartesian k-space trajectory or, in some cases, inconsistent respiratory gating. We therefore explored the potential utility of both breath-holding and free-breathing non-contrast CMRA, using radial k-space trajectories that are known to be less sensitive to flow and motion artifacts than Cartesian. Main body Free-breathing 3D Cartesian and radial stack-of-stars acquisitions were compared in 6 healthy subjects. In addition, 27 patients underwent CTA and non-contrast CMRA for PV mapping. Three radial CMR acquisition strategies were tested: (1) breath-hold (BH) 2D radial bSSFP (BH-2D); (2) breath-hold, multiple thin-slab 3D stack-of-stars bSSFP (BH-SOS); and (3) navigator-gated free-breathing (FB) 3D stack-of-star bSSFP using a spatially non-selective RF excitation (FB-NS-SOS). A non-rigid registration algorithm was used to compensate for variations in breath-hold depth. In healthy subjects, image quality and vessel sharpness using a free-breathing 3D SOS acquisition was significantly better than free-breathing (FB) Cartesian 3D. In patients, diagnostic image quality was obtained using all three radial CMRA techniques, with BH-SOS and FB-NS-SOS outperforming BH-2D. There was overall good correlation for PV maximal diameter between BH-2D and CTA (ICC = 0.87/0.83 for the two readers), excellent correlation between BH-SOS and CTA (ICC = 0.90/0.91), and good to excellent correlation between FB-NS-SOS and CTA (ICC = 0.87/0.94). For PV area, there was overall good correlation between BH-2D and CTA (ICC = 0.79/0.83), good to excellent correlation between BH-SOS and CTA (ICC = 0.88/0.91) and excellent correlation between FB-NS-SOS and CTA (ICC = 0.90/0.95). CNR was significantly higher with BH-SOS (mean = 11.04) by comparison to BH-2D (mean = 6.02; P = 0.007) and FB-NS-SOS (mean = 5.29; P = 0.002). Conclusion Our results suggest that a free-breathing stack-of-stars bSSFP technique is advantageous in providing accurate depiction of PV anatomy and ostial measurements without significant degradation from off-resonance artifacts, and with better image quality than Cartesian 3D. For patients in whom respiratory gating is unsuccessful, a breath-hold thin-slab stack-of-stars technique with retrospective motion correction may be a useful alternative.


2002 ◽  
Vol 179 (2) ◽  
pp. 445-449 ◽  
Author(s):  
Thomas C. Lauenstein ◽  
Susanne C. Goehde ◽  
Christoph U. Herborn ◽  
Wiebke Treder ◽  
Stefan G. Ruehm ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document