Two dimensional steady flow structures in laser-solid target interaction

1974 ◽  
Vol 16 (11) ◽  
pp. 1035-1049 ◽  
Author(s):  
G J Pert
2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Kamalesh Jana ◽  
Amit D. Lad ◽  
David West ◽  
Will Trickey ◽  
Chris Underwood ◽  
...  

1958 ◽  
Vol 4 (6) ◽  
pp. 600-606 ◽  
Author(s):  
G. Power ◽  
P. Smith

A set of two-dimensional subsonic flows past certain cylinders is obtained using hodograph methods, in which the true pressure-volume relationship is replaced by various straight-line approximations. It is found that the approximation obtained by a least-squares method possibly gives best results. Comparison is made with values obtained by using the von Kármán-Tsien approximation and also with results obtained by the variational approach of Lush & Cherry (1956).


2003 ◽  
Vol 158 (1) ◽  
pp. 39-58 ◽  
Author(s):  
Piotr Bogusław Mucha

1998 ◽  
Vol 23 (6) ◽  
pp. 349-370 ◽  
Author(s):  
Kie Joo Cho ◽  
Moon-Uhn Kim ◽  
Hyun Dong Shin

2015 ◽  
Vol 9 (2) ◽  
Author(s):  
Vladimir Evgenyevich Vershinin ◽  
Rodion Mikhaylovich Ganopolsky ◽  
Vitaly Olegovich Polyakov

One reason for carrying out the calculations of the previous paper was to provide material for an experimental study of the transition to turbulence in the wake behind a plate parallel to the stream. A second reason was to compare the results with certain results due to Filon, who has calculated both the List and second approximations to the velocity at a considerable distance from a fixed cylindrical obstacle in an unlimited stream whose velocity at infinity is constant.* He also uses the notions of the Oseen approximation; that is to say, he assumes that the departures from the undisturbed velocity are small, and neglects terms quadratic in these departures for the first approximations, etc .; but he does not assume that v is small and does not use the Prandtl equations. Thus the formulæ of paper 1, paragraph 2, should be limiting forms, for small v, of Filon's formulæ for a symmetrical wake. This is verified in paragraph 2 below; and the calculations in paper 1, paragraph 2, other than the attempt at a third approximation, may be regarded as a simplified form of Filon's calculations. The direct simplification of Filon's results gives the formulæ 2 (31) (p. 569), for the velocity at a sufficient distance downstream in any symmetrical wake provided that the motion is steady, whether v is small or not. these formulæ differ only in the last terms from the formulæ 2 (27) on p. 553 of paper 1, obtained from the Prandtl equations, and these terms are negligible, compared with the others, when v is small, (For the meaning of the symbols, see paragraph 1.3 of paper 1.) Thus the first asymptotic approximation is exactly the same here as in the previous paper ; in the second approximation the more accurate results of this paper contain extra terms, which it is shown on p. 567 arise entirely from the previous neglect of the pressure gradient in the direction of the stream.


1976 ◽  
Vol 98 (4) ◽  
pp. 592-606 ◽  
Author(s):  
David Japikse

Progress achieved in numerical analysis during the past decade now permits the turbo-machinery designer to carry out a wide variety of inviscid, steady flow, two-dimensional calculations for compressible sybsonic and transonic flow fields, including some strongly diffusing flows. Three-dimensional (including viscosity) calculations are under development and should find wide spread use as analysis tools during the next decade. This review offers an introduction to recent advances in numerical turbomachinery design methods guided by the author’s design usage of several of the techniques reported.


Sign in / Sign up

Export Citation Format

Share Document