scholarly journals Identifying the development in phase and amplitude of dipole and multipole radiation

2012 ◽  
Vol 33 (2) ◽  
pp. 345-358 ◽  
Author(s):  
E M Rice ◽  
D S Bradshaw ◽  
K Saadi ◽  
D L Andrews
Keyword(s):  
2021 ◽  
Author(s):  
Maria Cojocari ◽  
Alexey Basharin
Keyword(s):  

2019 ◽  
Vol 79 (10) ◽  
Author(s):  
N. A. Abdulov ◽  
A. V. Lipatov

Abstract The $$\Upsilon (3S)$$Υ(3S) production and polarization at high energies is studied in the framework of $$k_T$$kT-factorization approach. Our consideration is based on the non-relativistic QCD formalism for bound states formation and off-shell production amplitudes for hard partonic subprocesses. The transverse momentum dependent (TMD, or unintegrated) gluon densities in a proton were derived from the Ciafaloni-Catani-Fiorani-Marchesini (CCFM) evolution equation as well as from the Kimber–Martin–Ryskin (KMR) prescription. Treating the non-perturbative color octet transitions in terms of the multipole radiation theory and taking into account feed-down contributions from radiative $$\chi _b(3P)$$χb(3P) decays, we extract the corresponding non-perturbative matrix elements for $$\Upsilon (3S)$$Υ(3S) and $$\chi _b(3P)$$χb(3P) mesons from a combined fit to $$\Upsilon (3S)$$Υ(3S) transverse momenta distributions measured by the CMS and ATLAS Collaborations at the LHC energies $$\sqrt{s} = 7$$s=7 and 13 TeV and central rapidities. Then we apply the extracted values to describe the CDF and LHCb data on $$\Upsilon (3S)$$Υ(3S) production and to investigate the polarization parameters $$\lambda _\theta $$λθ, $$\lambda _\phi $$λϕ and $$\lambda _{\theta \phi }$$λθϕ, which determine the $$\Upsilon (3S)$$Υ(3S) spin density matrix. Our predictions have a good agreement with the currently available data within the theoretical and experimental uncertainties.


1937 ◽  
Vol 52 (9) ◽  
pp. 937-943 ◽  
Author(s):  
O. Halpern ◽  
F. Doermann

Sign in / Sign up

Export Citation Format

Share Document