Exact Analytical Solutions to the Two-Mode Mean-Field Model Describing Dynamics of a Split Bose–Einstein Condensate

2002 ◽  
Vol 37 (4) ◽  
pp. 413-418 ◽  
Author(s):  
Wu Ying ◽  
Yang Xiao-Xue
2021 ◽  
Vol 240 (1) ◽  
pp. 383-417
Author(s):  
Nikolai Leopold ◽  
David Mitrouskas ◽  
Robert Seiringer

AbstractWe consider the Fröhlich Hamiltonian in a mean-field limit where many bosonic particles weakly couple to the quantized phonon field. For large particle numbers and a suitably small coupling, we show that the dynamics of the system is approximately described by the Landau–Pekar equations. These describe a Bose–Einstein condensate interacting with a classical polarization field, whose dynamics is effected by the condensate, i.e., the back-reaction of the phonons that are created by the particles during the time evolution is of leading order.


2020 ◽  
Vol 35 (26) ◽  
pp. 2050227 ◽  
Author(s):  
Gennady P. Berman ◽  
Vyacheslav N. Gorshkov ◽  
Vladimir I. Tsifrinovich ◽  
Marco Merkli ◽  
Vladimir V. Tereshchuk

We consider a two-component dark matter halo (DMH) of a galaxy containing ultra-light axions (ULA) of different mass. The DMH is described as a Bose–Einstein condensate (BEC) in its ground state. In the mean-field (MF) limit, we have derived the integro-differential equations for the spherically symmetrical wave functions of the two DMH components. We studied, numerically, the radial distribution of the mass density of ULA and constructed the parameters which could be used to distinguish between the two- and one-component DMH. We also discuss an interesting connection between the BEC ground state of a one-component DMH and Black Hole temperature and entropy, and Unruh temperature.


2013 ◽  
Vol 8 (3) ◽  
pp. 319-327
Author(s):  
Yu-Ren Shi ◽  
Xue-Ling Wang ◽  
Guang-Hui Wang ◽  
Cong-Bo Liu ◽  
Zhi-Gang Zhou ◽  
...  

2019 ◽  
Vol 100 (2) ◽  
Author(s):  
G. Vasilakis ◽  
A. Roussou ◽  
J. Smyrnakis ◽  
M. Magiropoulos ◽  
W. von Klitzing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document