scholarly journals Mean-field model for Josephson oscillation in a Bose-Einstein condensate on an one-dimensional optical trap

2003 ◽  
Vol 25 (2) ◽  
pp. 161-166 ◽  
Author(s):  
S. K. Adhikari
2019 ◽  
Vol 21 ◽  
pp. 71
Author(s):  
A. Martinou ◽  
D. Bonatsos

Bright solitons of 7Li atoms in a quasi one-dimensional optical trap, formed in a stable Bose–Einstein condensate in which the interactions have been magnetically tuned from repulsive to attractive, have been seen to exhibit repulsive interactions among them when set in motion by offsetting the optical potential. Solving first the Gross–Pitaevskii equation for the special conditions corresponding to the experiment, we show then that this system can be described in terms of generalized parafermionic oscillators, the order of the parafermions being related to the strength of the interaction among the atoms and being a measure of the bosonic behavior vs. the fermionic behavior of the system.


2018 ◽  
Vol 29 (10) ◽  
pp. 1850100
Author(s):  
Ze Cheng

Bose–Einstein condensates of repulsive Bose atoms in a one-dimensional harmonic trap are investigated within the framework of a mean field theory. We solve the one-dimensional nonlinear Gross–Pitaevskii (GP) equation that describes atomic Bose–Einstein condensates. As a result, we acquire a family of exact breather solutions of the GP equation. We numerically calculate the number density [Formula: see text] of atoms that is associated with these solutions. The first discovery of the calculation is that at the instant of the saddle point, the density profile exhibits a sharp peak with extremely narrow width. The second discovery of the calculation is that in the center of the trap ([Formula: see text] m), the number density is a U-shaped function of the time [Formula: see text]. The third discovery of the calculation is that the surface plot of the density [Formula: see text] likes a saddle surface. The fourth discovery of the calculation is that as the number [Formula: see text] of atoms increases, the Bose–Einstein condensate in a one-dimensional harmonic trap becomes stabler and stabler.


2021 ◽  
Vol 240 (1) ◽  
pp. 383-417
Author(s):  
Nikolai Leopold ◽  
David Mitrouskas ◽  
Robert Seiringer

AbstractWe consider the Fröhlich Hamiltonian in a mean-field limit where many bosonic particles weakly couple to the quantized phonon field. For large particle numbers and a suitably small coupling, we show that the dynamics of the system is approximately described by the Landau–Pekar equations. These describe a Bose–Einstein condensate interacting with a classical polarization field, whose dynamics is effected by the condensate, i.e., the back-reaction of the phonons that are created by the particles during the time evolution is of leading order.


2018 ◽  
Vol 4 (4) ◽  
Author(s):  
Alessandro Fabbri ◽  
Nicolas Pavloff

We study the two-body momentum correlation signal in a quasi one dimensional Bose-Einstein condensate in the presence of a sonic horizon. We identify the relevant correlation lines in momentum space and compute the intensity of the corresponding signal. We consider a set of different experimental procedures and identify the specific issues of each measuring process. We show that some inter-channel correlations, in particular the Hawking quantum-partner one, are particularly well adapted for witnessing quantum non-separability, being resilient to the effects of temperature and/or quantum quenches.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012200
Author(s):  
K G Zloshchastiev

Abstract We recall the experimental data of one-dimensional axial propagation of sound near the center of the Bose-Einstein condensate cloud, which used the optical dipole force method of a focused laser beam and rapid sequencing of nondestructive phase-contrast images. We reanalyze these data within the general quantum fluid framework but without model-specific theoretical assumptions; using the standard best fit techniques. We demonstrate that some of their features cannot be explained by means of the perturbative two-body approximation and Gross-Pitaevskii model, and conjecture possible solutions.


Sign in / Sign up

Export Citation Format

Share Document