Gauge Invariance of a Time-Dependent Harmonic Oscillator in Magnetic Dipole Approximation

2008 ◽  
Vol 49 (2) ◽  
pp. 308-310 ◽  
Author(s):  
Qian Shang-Wu ◽  
Wang Jing-Shan
2003 ◽  
Vol 17 (18) ◽  
pp. 983-990 ◽  
Author(s):  
Swapan Mandal

The quantization of a driven harmonic oscillator with time dependent mass and frequency (DHTDMF) is considered. We observe that the driven term has no influence on the quantization of the oscillator. It is found that the DHTDMF corresponds the general quadratic Hamiltonian. The present solution is critically compared with existing solutions of DHTDMF.


2021 ◽  
Vol 62 (2) ◽  
pp. 023501
Author(s):  
J. Boháčik ◽  
P. Prešnajder ◽  
P. Augustín

1993 ◽  
Vol 07 (28) ◽  
pp. 4827-4840 ◽  
Author(s):  
DONALD H. KOBE ◽  
JIONGMING ZHU

The most general time-dependent Hamiltonian for a harmonic oscillator is both linear and quadratic in the coordinate and the canonical momentum. It describes in general a harmonic oscillator with mass, spring “constant,” and friction (or antifriction) “constant,” all of which are time dependent, that is acted on by a time-dependent force. A generalized Hannay angle, which is gauge invariant, is defined by making a distinction between the Hamiltonian and the energy. The generalized Hannay angle is the classical counterpart of the generalized Berry phase in quantum theory. When friction is present the generalized Hannay angle is nonzero. If the Hamiltonian is (incorrectly) chosen to be the energy, the generalized Hannay angle is different. Nevertheless, in the adiabatic case the same total angle is obtained.


2018 ◽  
Vol 98 (6) ◽  
Author(s):  
Ryoji Anzaki ◽  
Yasushi Shinohara ◽  
Takeshi Sato ◽  
Kenichi L. Ishikawa

Sign in / Sign up

Export Citation Format

Share Document