canonical momentum
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 12)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
C. Huang ◽  
Yong-Chang Huang ◽  
Xinfei Li

This paper gives both a general canonical quantum gravity theory and the general canonical quantum gravity theories of the Universe and general black hole, and discovers the relations reflecting symmetric properties of the standard nonlinear gravitational Lagrangian, which are not relevant to any concrete metric models. This paper concretely shows the general commutation relations of the general gravitational field operators and their zeroth, first, second and third style, respectively, of high order canonical momentum operators for the general nonlinear system of the standard gravitational Lagrangian, and then has finished all the four styles of the canonical quantization of the standard gravity.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012152
Author(s):  
Ivan Toftul ◽  
Kristina Frizyuk ◽  
Mihail Petrov

Abstract Spherical particles both dielectric and metallic are essential building blocks in nanophotonics. During the recent rapid development of Mie-tronic — nanophotonics devices heavily using various features of the Mie-resonances — the deep fundamental investigation of the eigenmodes of such particles by using the novel tools is still relevant and currently important. Moreover, eigenmodes of a sphere are closely related to the Vector Spherical Harmonics (VSH) which are widely used in the multipolar decomposition to analyze less symmetric structures. In this work, we study in detail the canonical spin and angular momenta (AM), helicity, and other properties of the eigenmodes of dielectric (nondispersive) and metallic (dispersive) spheres. We show that the canonical momentum density of the AM is quantized and has a close relation to the quantum picture of a single photon. Our work provides a solid platform for future studies and applications of the AM transfer from near fields of spherical particles to the matter in its vicinity.


Author(s):  
C. Huang ◽  
Yong-Chang Huang ◽  
Xinfei Li

This paper gives both the solutions to the puzzles of quantum gravity and a general theory of quantum gravity, further shows quantum gravity of the Universe and general black hole, and discovers their relations reflecting symmetric propertis of the standard nonlinear gravitational Lagrangian, which are not relevant to any concrete metric models. This paper concretely shows the general commutation relations of the general gravitational field operators and their zeroth, first, second and third style, respectively, of high order canonical momentum operators for the general nonlinear system of the standard gravitational Lagrangian, and then has finished all the four styles of the quantization of the standard gravity. No needing, as usual, to solve the Euler-Lagrange equation to complete the whole process of the quantization of the standard gravitational fields, namely, this paper novelly simplifies all the current quantization theories of the standard gravitational fields. So lots of the complex calculations of quantum gravitational field theories up to now can be omitted to make the physical picture clearer, simpler and more easily understanding. Therefore, the solutions to puzzles of quantum gravity are given. Consequently, this paper opens a door to study and give a general theory of the quantum gravitational field don't depending on any concrete metric models.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1178
Author(s):  
Jeong Ryeol Choi

We investigate the nonextensivity of a generalized dissipative oscillatory system in the Glauber coherent state. We introduce a parameter q as a measure of the nonextensivity of the system. Considering the characteristic of nonextensivity, the system is described by a deformed Caldirola–Kanai oscillator, which is represented in terms of q. We manage the system by describing the associated Hamiltonian in terms of the harmonic oscillator ladder operators. The time evolutions of the canonical variables, the Hamiltonian expectation value, the quantum energy, and the symmetry-breaking in the evolution of the system, are analyzed in detail regarding their dependence on q, damping factor, and the external driving force. The amplitude of the oscillator is slightly quenched as q becomes large, whereas the amplitude of the canonical momentum is enhanced in response to the growth in q. As q increases, the dissipation of the quantum energy becomes a little faster as a manifestation of the nonextensivity of the system. Our results are compared to the classical results, as well as to those in the previous research performed on the basis of the SU(1,1) coherent states. The coherent states, including the Glauber coherent states, can be convenient resources for carrying information, which is crucial in quantum information processing.


2021 ◽  
Author(s):  
Neng Wang ◽  
Ruoyang Zhang ◽  
Shubo Wang ◽  
Guo Ping Wang ◽  
Che Ting Chan

Author(s):  
Alexander L. Kholmetskii ◽  
Oleg V. Missevitch ◽  
Tolga Yarman

We analyse the physical meaning of quantum phase effects for point-like charges and electric (magnetic) dipoles in an electromagnetic (EM) field. At present, there are known eight effects of such a kind: four of them (the magnetic and electric Aharonov – Bohm phases for electrons, the Aharonov – Casher phase for a moving magnetic dipole and the He – McKellar – Wilkens phase for a moving electric dipole) had been disclosed in 20th century, while four new quantum phases had recently been found by our team (A. L. Kholmetskii, O. V. Missevitch, T. Yarman). In our analysis of physical meaning of these phases, we adopt that a quantum phase for a dipole represents a superposition of quantum phases for each charge, composing the dipole. In this way, we demonstrate the failure of the Schrödinger equation for a charged particle in an EM field to describe new quantum phase effects, when the standard definition of the momentum operator is used. We further show that a consistent description of quantum phase effects for moving particles is achieved under appropriate re-definition of this operator, where the canonical momentum of particle in EM field is replaced by the interactional EM field momentum. Some implications of this result are discussed.


2020 ◽  
Vol 384 (14) ◽  
pp. 126284
Author(s):  
Yuanfei Hui ◽  
Zhiwei Cui ◽  
Pan Song ◽  
Yiping Han ◽  
Wenjuan Zhao

2020 ◽  
Vol 86 (2) ◽  
Author(s):  
David Zarzoso ◽  
Diego del-Castillo-Negrete

The confinement of energetic particles in nuclear fusion devices is studied in the presence of an oscillating radial electric field and an axisymmetric magnetic equilibrium. It is shown that, despite the poloidal and toroidal symmetries, initially integrable orbits turn into chaotic regions that can potentially intercept the wall of the tokamak, leading to particle losses. It is observed that the losses exhibit algebraic time decay different from the expected exponential decay characteristic of radial diffusive transport. A dynamical explanation of this behaviour is presented, within the continuous time random walk theory. The central point of the analysis is based on the fact that, contrary to the radial displacement, the poloidal angle is not bounded and a proper statistical analysis can therefore be made, showing for the first time that energetic particle transport can be super-diffusive in the poloidal direction and characterised by asymmetric poloidal displacement. The connection between poloidal and radial positions ensured by the conservation of the toroidal canonical momentum, implies that energetic particles spend statistically more time in the inner region of the tokamak than in the outer one, which explains the observed algebraic decay. This indicates that energetic particles might be efficiently slowed down by the thermal population before leaving the system. Also, the asymmetric transport reveals a new possible mechanism of self-generation of momentum.


Sign in / Sign up

Export Citation Format

Share Document