Algebraic Method for Constructing Exact Discrete Soliton Solutions of Toda and mKdV Lattices

2008 ◽  
Vol 49 (6) ◽  
pp. 1407-1409 ◽  
Author(s):  
Wang Jun-Min ◽  
Ji Jie
Author(s):  
Nauman Raza ◽  
Ziyad A. Alhussain

This paper introduces a new fractional electrical microtubules transmission lines model in the sense of Atangana–Baleanu and beta derivatives to comprehend nonlinear dynamics of the governing system. This structure possesses one of the most important parts in cellular process biology and fractional parameter incorporates the memory effects in microtubules. Also, microtubules are extremely beneficial in cell motility, signaling and intracellular transport. The new extended direct algebraic method is a compelling and persuasive integrating scheme to extract soliton solutions. The retrieved solutions include dark, bright and singular solitons. This model executes a prominent part in exhibiting the wave transmission in nonlinear systems. The novelty and advantage of the proposed method are portrayed by applying it to this model and its dynamical behavior is depicted by 3D and 2D plots. A comparative study of two fractional derivatives at distinct fractional parameter values and graphics of sensitivity analysis is also carried out in this paper.


Author(s):  
Khalid K. Ali ◽  
Hadi Rezazadeh ◽  
Nauman Raza ◽  
Mustafa Inc

The main consideration of this paper is to discuss cubic optical solitons in a polarization-preserving fiber modeled by nonlinear Schrödinger equation (NLSE). We extract the solutions in the forms of hyperbolic, trigonometric including a class of solitary wave solutions like dark, bright–dark, singular, singular periodic, multiple-optical soliton and mixed complex soliton solutions. A recently developed integration tool known as new extended direct algebraic method (NEDAM) is applied to analyze the governing model. Moreover, the studied equation is discussed with two types of nonlinearity. The constraint conditions are explicitly presented for the resulting solutions. The accomplished results show that the applied computational system is direct, productive, reliable and can be carried out in more complicated phenomena.


2007 ◽  
Vol 34 (3) ◽  
pp. 940-946 ◽  
Author(s):  
Xiao-Fei Wu ◽  
Hong-Liang Ge ◽  
Zheng-Yi Ma

2019 ◽  
Vol 33 (13) ◽  
pp. 1950158 ◽  
Author(s):  
Nauman Raza ◽  
Asad Zubair

This work is devoted to scrutinize new optical soliton solutions to the spatially temporal [Formula: see text]-dimensional nonlinear Schrödinger’s equation (NLSE) with anti-cubic nonlinearity. Two different versatile integration architectures are used to extract these solitons. Extended direct algebraic method (EDAM) is utilized to pluck out optical, dark and singular soliton solutions, whereas generalized Kudryashov method (GKM) provides rational solutions. The fetched results are new and useful for the propagation of light pulses in optical fibers in [Formula: see text]-dimensions. For the existence of these solitons, constraint conditions are also listed.


2005 ◽  
Vol 60 (3) ◽  
pp. 127-138
Author(s):  
Yong Chen ◽  
Qi Wang ◽  
Yanghuai Lang

By using a new more general ansatz with the aid of symbolic computation, we extended the unified algebraic method proposed by Fan [Computer Phys. Commun. 153, 17 (2003)] and the improved extended tanh method by Yomba [Chaos, Solitons and Fractals 20, 1135 (2004)] to uniformly construct a series of soliton-like solutions and double-like periodic solutions for nonlinear partial differential equations. The efficiency of the method is demonstrated on the (2+1)-dimensional Broer-Kaup- Kupershmidt equation.


Sign in / Sign up

Export Citation Format

Share Document