An explicit plethora of soliton solutions for a new microtubules transmission lines model: A fractional comparison

Author(s):  
Nauman Raza ◽  
Ziyad A. Alhussain

This paper introduces a new fractional electrical microtubules transmission lines model in the sense of Atangana–Baleanu and beta derivatives to comprehend nonlinear dynamics of the governing system. This structure possesses one of the most important parts in cellular process biology and fractional parameter incorporates the memory effects in microtubules. Also, microtubules are extremely beneficial in cell motility, signaling and intracellular transport. The new extended direct algebraic method is a compelling and persuasive integrating scheme to extract soliton solutions. The retrieved solutions include dark, bright and singular solitons. This model executes a prominent part in exhibiting the wave transmission in nonlinear systems. The novelty and advantage of the proposed method are portrayed by applying it to this model and its dynamical behavior is depicted by 3D and 2D plots. A comparative study of two fractional derivatives at distinct fractional parameter values and graphics of sensitivity analysis is also carried out in this paper.

2011 ◽  
Vol 99-100 ◽  
pp. 1059-1062
Author(s):  
Ji Duo Jin ◽  
Ning Li ◽  
Zhao Hong Qin

The nonlinear dynamics are studied for a supported cylinder subjected to axial flow. A nonlinear model is presented for dynamics of the cylinder supported at both ends. The nonlinear terms considered here are the quadratic viscous force and the structural nonlinear force induced by the lateral motions of the cylinder. Using two-mode discretized equation, numerical simulations are carried out for the dynamical behavior of the cylinder to explain the flutter instability found in the experiment. The results of numerical analysis show that at certain value of flow velocity the system loses stability by divergence, and the new equilibrium (the buckled configuration) becomes unstable at higher flow leading to post-divergence flutter. The effect of the friction drag coefficients on the behavior of the system is investigated.


Author(s):  
Ge Kai ◽  
Wei Zhang

In this paper, we establish a dynamic model of the hyper-chaotic finance system which is composed of four sub-blocks: production, money, stock and labor force. We use four first-order differential equations to describe the time variations of four state variables which are the interest rate, the investment demand, the price exponent and the average profit margin. The hyper-chaotic finance system has simplified the system of four dimensional autonomous differential equations. According to four dimensional differential equations, numerical simulations are carried out to find the nonlinear dynamics characteristic of the system. From numerical simulation, we obtain the three dimensional phase portraits that show the nonlinear response of the hyper-chaotic finance system. From the results of numerical simulation, it is found that there exist periodic motions and chaotic motions under specific conditions. In addition, it is observed that the parameter of the saving has significant influence on the nonlinear dynamical behavior of the four dimensional autonomous hyper-chaotic system.


2012 ◽  
Vol 09 ◽  
pp. 334-340 ◽  
Author(s):  
MADA SANJAYA WS ◽  
ISMAIL BIN MOHD ◽  
MUSTAFA MAMAT ◽  
ZABIDIN SALLEH

In this paper, we study mathematical model of ecology with a tritrophic food chain composed of a classical Lotka-Volterra functional response for prey and predator, and a Holling type-III functional response for predator and super predator. There are two equilibrium points of the system. In the parameter space, there are passages from instability to stability, which are called Hopf bifurcation points. For the first equilibrium point, it is possible to find bifurcation points analytically and to prove that the system has periodic solutions around these points. Furthermore the dynamical behaviors of this model are investigated. Models for biologically reasonable parameter values, exhibits stable, unstable periodic and limit cycles. The dynamical behavior is found to be very sensitive to parameter values as well as the parameters of the practical life. Computer simulations are carried out to explain the analytical findings.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5335
Author(s):  
Muhammad Bilal Riaz ◽  
Jan Awrejcewicz ◽  
Adil Jhangeer

In this article, we explore solitary wave structures in nonlinear negative-index materials with beta and M-truncated fractional derivatives with the existence of a Bohm potential. The consideration of Bohm potential produced quantum phase behavior in electromagnetic waves. The applied technique is the New extended algebraic method. By use of this approach, acquired solutions convey various types of new families containing dark, dark-singular, dark-bright, and singular solutions of Type 1 and 2. Moreover, the constraint conditions for the presence of the obtained solutions are a side-effect of this technique. Finally, graphical structures are depicted.


2020 ◽  
Vol 66 (3 May-Jun) ◽  
pp. 297
Author(s):  
Mehmet Senol

In this study, new extended direct algebraic method is successfully implemented to acquire new exact wave solution sets for symmetric regularized-long-wave (SRLW) equation which arise in long water flow models. By the help of Mathematica symbolic calculation package, the method produced a great number of analytical solutions. We also presented a few graphical illustrations for some surfaces. The fractional derivatives are considered in the conformable sense. All of the solutions were checked by substitution to ensure the reliability of the method. Obtained results confirm that the method is straightforward, powerful and effective method to attain exact solutions for nonlinear fractional differential equations. Therefore, the method is a good candidate to take part in the existing literature.


2018 ◽  
Vol 32 (02) ◽  
pp. 1850012 ◽  
Author(s):  
Jiangen Liu ◽  
Yufeng Zhang

This paper gives an analytical study of dynamic behavior of the exact solutions of nonlinear Korteweg–de Vries equation with space–time local fractional derivatives. By using the improved [Formula: see text]-expansion method, the explicit traveling wave solutions including periodic solutions, dark soliton solutions, soliton solutions and soliton-like solutions, are obtained for the first time. They can better help us further understand the physical phenomena and provide a strong basis. Meanwhile, some solutions are presented through 3D-graphs.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Talgat R. Gazizov ◽  
Indira Ye. Sagiyeva ◽  
Sergey P. Kuksenko

In this paper we consider the complexity problem in electronics production process. Particularly, we investigate the ways to reduce sensitivity of transmission line characteristics to their parameter variations. The reduction is shown for the per-unit-length delay and characteristic impedance of several modifications of microstrip transmission lines. It can be obtained by means of making an optimal choice of parameter values, enabling proper electric field redistribution in the air and the substrate. To achieve this aim we used an effective simulation technique and software tools. Taken together, for the first time, they have allowed formulating general approach which is relevant to solve a wide range of similar tasks.


Author(s):  
Masataka Fukunaga ◽  
Nobuyuki Shimizu ◽  
Hiroshi Nasuno

Nonlinear fractional calculus model for the viscoelastic material is examined for oscillation around the off-equilibrium point. The model equation consists of two terms of different order fractional derivatives. The lower order derivative characterizes the slow process, and the higher order derivative characterizes the process of rapid oscillation. The measured difference in the order of the fractional derivative of the material, that the order is higher when the material is rapidly oscillated than when it is slowly compressed, is partly attributed to the difference in the frequency dependence between the two fractional derivatives. However, it is found that there could be possibility for the variable coefficients of the two terms with the rate of change of displacement.


2015 ◽  
Vol 265 ◽  
pp. 994-1002 ◽  
Author(s):  
Muhammad Younis ◽  
Syed Tahir Raza Rizvi ◽  
Safdar Ali

Sign in / Sign up

Export Citation Format

Share Document