Classification of Kantowski–Sachs and Bianchi Type III Space-Times According to Their Killing Vector Fields in Teleparallel Theory of Gravitation

2010 ◽  
Vol 54 (3) ◽  
pp. 469-472 ◽  
Author(s):  
Ghulam Shabbir ◽  
Suhail Khan
2010 ◽  
Vol 25 (07) ◽  
pp. 525-533 ◽  
Author(s):  
GHULAM SHABBIR ◽  
SUHAIL KHAN

In this paper we classify cylindrically symmetric static spacetimes according to their teleparallel Killing vector fields using direct integration technique. It turns out that the dimension of the teleparallel Killing vector fields are 3, 4, 6 or 10 which are the same in numbers as in general relativity. In case of 3, 4 or 6 the teleparallel Killing vector fields are multiple of the corresponding Killing vector fields in general relativity by some function of r. In the case of 10 Killing vector fields the spacetime becomes Minkowski spacetime and all the torsion components are zero. The Killing vector fields in this case are exactly the same as in general relativity. Here we also discuss the Lie algebra in each case. It is important to note that this classification also covers the plane symmetric static spacetimes.


2010 ◽  
Vol 25 (20) ◽  
pp. 1733-1740 ◽  
Author(s):  
GHULAM SHABBIR ◽  
SUHAIL KHAN

The aim of this paper is to classify Bianchi type II spacetimes according to their teleparallel Killing vector fields using the direct integration technique. Studying teleparallel Killing vector fields in the above spacetimes, it turns out that the dimensions of the teleparallel Killing vector fields are 4, 5 or 7. A brief comparison between teleparallel and general relativity Killing vector fields are given. It is shown that for the above spacetimes in the presence of torsion we get more conservation laws which are different from the theory of general relativity.


2010 ◽  
Vol 25 (25) ◽  
pp. 2145-2153 ◽  
Author(s):  
GHULAM SHABBIR ◽  
SUHAIL KHAN

In this paper we explored teleparallel homothetic vector fields in Bianchi type I spacetimes in the teleparallel theory of gravitation using direct integration technique. It turns out that the dimensions of the teleparallel homothetic vector fields are 4, 5, 7 or 11 which are same in numbers as in general relativity. In the cases of 4, 5 or 7 proper teleparallel homothetic vector fields exist for the special choice of the spacetimes. In the case of 11 teleparallel homothetic vector fields all the torsion components are zero. The homothetic vector fields of general relativity are recovered in this case and the spacetime become Minkowski.


2019 ◽  
Vol 34 (11) ◽  
pp. 1950079 ◽  
Author(s):  
Ghulam Shabbir ◽  
Fiaz Hussain ◽  
A. H. Kara ◽  
Muhammad Ramzan

The purpose of this paper is to find conformal vector fields of some perfect fluid Kantowski–Sachs and Bianchi type III spacetimes in the [Formula: see text] theory of gravity using direct integration technique. In this study, there exist only eight cases. Studying each case in detail, we found that in two cases proper conformal vector fields exist while in the rest of the cases, conformal vector fields become Killing vector fields. The dimension of conformal vector fields is either 4 or 6.


2010 ◽  
Vol 25 (01) ◽  
pp. 55-61 ◽  
Author(s):  
GHULAM SHABBIR ◽  
SUHAIL KHAN

In this paper we classify Bianchi type I spacetimes according to their teleparallel Killing vector fields using direct integration technique. It turns out that the dimension of the teleparallel Killing vector fields is 3, 4, 6 or 10 which are the same in numbers as in general relativity. In case of 3, 4 or 6 the teleparallel Killing vector fields are multiple of the corresponding Killing vector fields in general relativity by some function of t. In the case of 10 Killing vector fields, the spacetime becomes Minkowski and all the torsion components are zero. The Killing vector fields in this case are exactly the same as in the general relativity.


2018 ◽  
Vol 15 (08) ◽  
pp. 1850126 ◽  
Author(s):  
Suhail Khan ◽  
Amjad Mahmood ◽  
Ahmad T. Ali

This paper intends to obtain concircular vector fields (CVFs) of Kantowski–Sachs and Bianch type-III spacetimes. For this purpose, ten conformal Killing equations and their general solution in the form of conformal Killing vector fields (CKVFs) are derived along with their conformal factors. The obtained conformal Killing vector fields are then placed in Hessian equations to obtain the final form of concircular vector fields. The existence of concircular symmetry imposes restrictions on the metric functions. The conditions imposing restrictions on these metric functions are obtained as a set of integrability conditions. It is shown that Kantowski–Sachs and Bianchi type-III spacetimes admit four-, six-, or fifteen-dimensional concircular vector fields. It is established that for Einstein spaces, every conformal Killing vector field is a concircular vector field. Moreover, it is explored that every concircular vector field obtained here is also a conformal Ricci collineation.


2021 ◽  
Vol 13(62) (2) ◽  
pp. 451-462
Author(s):  
Lakehal Belarbi

In this work we consider the three-dimensional generalized symmetric space, equipped with the left-invariant pseudo-Riemannian metric. We determine Killing vector fields and affine vectors fields. Also we obtain a full classification of Ricci, curvature and matter collineations


Sign in / Sign up

Export Citation Format

Share Document