scholarly journals On the symmetries of three-dimensional generalized symmetric spaces

2021 ◽  
Vol 13(62) (2) ◽  
pp. 451-462
Author(s):  
Lakehal Belarbi

In this work we consider the three-dimensional generalized symmetric space, equipped with the left-invariant pseudo-Riemannian metric. We determine Killing vector fields and affine vectors fields. Also we obtain a full classification of Ricci, curvature and matter collineations

Mathematica ◽  
2020 ◽  
Vol 62 (85) (2) ◽  
pp. 133-147
Author(s):  
Lakehal Belarbi

We consider the four-dimensional generalized symmetric spaces of type C, equipped with a left-invariant Lorentzian metric. We completely describe its affine, homothetic and Killing vector fields. We also obtain a full classification of its Ricci, curvature and matter collineations.


2003 ◽  
Vol 14 (05) ◽  
pp. 559-572 ◽  
Author(s):  
Oldřich Kowalski ◽  
Zdeněk Vlášek ◽  
Barbara Opozda

In this paper we make the first steps to a classification of (pseudo-) Riemannian manifolds which are not locally homogeneous but their Levi–Civita connections are homogeneous. The full classification is given for dimension n = 2; in higher dimensions we prove some substantial partial results. In more generality, we are also interested in the difference between the dimension of the algebra of affine Killing vector fields and that of the algebra of metric Killing vector fields (without any homogeneity properties).


2020 ◽  
Vol 17 (14) ◽  
pp. 2050212
Author(s):  
Zafar Iqbal ◽  
Joydeep Sengupta ◽  
Subenoy Chakraborty

The aim of this paper is to investigate Killing magnetic trajectories of varying electrically charged particles in a three-dimensional warped product [Formula: see text] with positive warping function [Formula: see text], where [Formula: see text] is an open interval in [Formula: see text] equipped with an induced semi-Euclidean metric on [Formula: see text]. First, Killing vector fields on [Formula: see text] are characterized and it is observed that lifts to [Formula: see text] of Killing vector fields tangent to [Formula: see text] are also Killing on [Formula: see text]. Now, any Killing vector field on [Formula: see text] corresponds to a Killing magnetic field on [Formula: see text]. Magnetic trajectories (also known as magnetic curves) of charged particles which move under the influence of Lorentz force generated by Killing magnetic fields on [Formula: see text] are obtained in both Riemannian and Lorentzian cases. Moreover, some examples are exhibited with pictures determining Killing magnetic trajectories in hyperbolic [Formula: see text]-space [Formula: see text] modeled by the Riemannian warped product [Formula: see text]. Furthermore, some examples of spacelike, timelike and lightlike Killing magnetic trajectories are given with their possible graphs in the Lorentzian warped product [Formula: see text].


2010 ◽  
Vol 25 (07) ◽  
pp. 525-533 ◽  
Author(s):  
GHULAM SHABBIR ◽  
SUHAIL KHAN

In this paper we classify cylindrically symmetric static spacetimes according to their teleparallel Killing vector fields using direct integration technique. It turns out that the dimension of the teleparallel Killing vector fields are 3, 4, 6 or 10 which are the same in numbers as in general relativity. In case of 3, 4 or 6 the teleparallel Killing vector fields are multiple of the corresponding Killing vector fields in general relativity by some function of r. In the case of 10 Killing vector fields the spacetime becomes Minkowski spacetime and all the torsion components are zero. The Killing vector fields in this case are exactly the same as in general relativity. Here we also discuss the Lie algebra in each case. It is important to note that this classification also covers the plane symmetric static spacetimes.


2020 ◽  
Vol 35 (28) ◽  
pp. 2050232
Author(s):  
Muhammad Amer Qureshi ◽  
Ghulam Shabbir ◽  
K. S. Mahomed ◽  
Taha Aziz

We study proper teleparallel conformal vector fields in spherically symmetric static spacetimes. The main objective of this paper is to present the classification for the above-mentioned spacetimes. The problem has been examined by two methods: direct integration technique and diagonal tetrads. We show that the spherically symmetric static spacetimes do not admit proper teleparallel conformal vector field, so are actually the teleparallel killing vector fields.


2010 ◽  
Vol 25 (01) ◽  
pp. 55-61 ◽  
Author(s):  
GHULAM SHABBIR ◽  
SUHAIL KHAN

In this paper we classify Bianchi type I spacetimes according to their teleparallel Killing vector fields using direct integration technique. It turns out that the dimension of the teleparallel Killing vector fields is 3, 4, 6 or 10 which are the same in numbers as in general relativity. In case of 3, 4 or 6 the teleparallel Killing vector fields are multiple of the corresponding Killing vector fields in general relativity by some function of t. In the case of 10 Killing vector fields, the spacetime becomes Minkowski and all the torsion components are zero. The Killing vector fields in this case are exactly the same as in the general relativity.


2021 ◽  
Vol 60 (1) ◽  
pp. 17-22
Author(s):  
Tatiana A. Andreeva ◽  
Dmitry N. Oskorbin ◽  
Evgeny D. Rodionov

Conformally Killing fields play an important role in the theory of Ricci solitons and also generate an important class of locally conformally homogeneous (pseudo) Riemannian manifolds. In the Riemannian case, V. V. Slavsky and E.D. Rodionov proved that such spaces are either conformally flat or conformally equivalent to locally homogeneous Riemannian manifolds. In the pseudo-Riemannian case, the question of their structure remains open. Pseudo-Riemannian symmetric spaces of order k, where k 2, play an important role in research in pseudo-Riemannian geometry. Currently, they have been investigated in cases k=2,3 by D.V. Alekseevsky, A.S. Galaev and others. For arbitrary k, non-trivial examples of such spaces are known: generalized Kachen - Wallach manifolds. In the case of small dimensions, these spaces and Killing vector fields on them were studied by D.N. Oskorbin, E.D. Rodionov, and I.V. Ernst with the helpof systems of computer mathematics. In this paper, using the Sagemath SCM, we investigate conformally Killing vector fields on five-dimensional indecomposable 2- symmetric Lorentzian manifolds, and construct an algorithm for their computation.


2018 ◽  
Vol 15 (11) ◽  
pp. 1850193 ◽  
Author(s):  
Ghulam Shabbir ◽  
Muhammad Ramzan ◽  
Fiaz Hussain ◽  
S. Jamal

A classification of static spherically symmetric space-times in [Formula: see text] theory of gravity according to their conformal vector fields (CVFs) is presented. For this analysis, a direct integration technique is used. This study reveals that for static spherically symmetric space-times in [Formula: see text] theory of gravity, CVFs are just Killing vector fields (KVFs) or homothetic vector fields (HVFs). For this classification, six cases have been discussed out of which there exists only one case for which CVFs become HVFs while in the rest of the cases CVFs become KVFs.


Sign in / Sign up

Export Citation Format

Share Document